
Simulating and Emulating the Characteristic Packet
Delay of Logical 5G TSN Bridges

Lucas Haug, Frank Dürr, Simon Egger
Institute of Parallel and Distributed Systems

University of Stuttgart
Stuttgart, Germany

{lucas.haug,frank.duerr,simon.egger}@ipvs.uni-stuttgart.de

Lorenz Grohmann
Institute of Parallel and Distributed Systems

University of Stuttgart
Stuttgart, Germany

st161568@stud.uni-stuttgart.de

James Gross, Gourav Prateek Sharma
School of Electrical Engineering & Computer Science

Royal Institute of Technology (KTH)
Stockholm, Sweden

{jamesgr,gpsharma}@kth.se

Joachim Sachs
Ericsson Research
Bremen, Germany

joachim.sachs@ericsson.com

Abstract—Due to the demand of many time-sensitive mobile
applications, there is currently a strong trend to extend Time-
Sensitive Networking (TSN) to the wireless domain. In particular,
3GPP has speficied a logial 5G TSN bridge, which implements
the same functions as wireline TSN bridges (e.g. the Time-
Aware Shaper of IEEE 802.1Qbv). However, a logical bridge
has fundamentally different port-to-port delay properties than
its wired counterpart. In this paper, we present two open-source
tools and open latency data sets for simulating and emulating
the characteristic port-to-port delay of logical 5G TSN bridges.

Index Terms—simulation, emulation, time-sensitive network-
ing, mobile communication, 5G, delay

I. INTRODUCTION

Many safety-critical cyber-physical systems rely on the
timely delivery of data over a real-time communication net-
work. Moreover, many of these systems include mobile de-
vices and, therefore, require wireless real-time communication.
Some examples of use cases include the coordination of the
movement of automated guided vehicles on a factory shop
floor, or smart farming, with drones monitoring the area in
front of harvesters to ensure the safety of animals in the field
(see [1] for a description of these and other use cases).

The requirement for real-time communication with strict
bounds on end-to-end packet delay (PD) and packet delay vari-
ation (PDV) has been well recognized by major standardiza-
tion bodies. IEEE has specified standards under the umbrella
term Time-Sensitive Networking to support “deterministic”
real-time communication over standard Ethernet. This includes
different so-called shapers to schedule traffic at TSN bridges
along the end-to-end path between talker (sender) and listener
(receiver). In particular, we will consider the so-called Time-
Aware Shaper (TAS) in this paper, which uses a time-driven
gating mechanism at each TSN bridge to control when egress
queues for different traffic priorities forward packets.

TSN has been extended from the wired domain (Ethernet) to
wireless domain (mobile 5G networks) by 3GPP by specifying

Fig. 1: Logical 5G TSN bridge

the so-called logical TSN bridge depicted in Figure 1. A
logical (wireless) TSN bridge implements the same functions
as its wired counterpart. In particular, the gating mechanism
of the TAS is implemented by the TSN Translators (TT).
The mobile User Equipment (UE) is connected to the bridge
at the Device-Side TT (DS-TT); the Network-TT (NW-TT)
connects to wired TSN bridges. Note that the wireless link
between UE and base station (gNB) is inside the bridge, i.e.,
internally connecting the ports of the logical bridge. This has
fundamental consequences on the non-functional properties
of the logical bridge, specifically, the port-to-port delay (also
called bridge delay in the standard).

We have measured and compared the port-to-port delay
of wired TSN bridges and wireless logical bridges using 5G
technology (commodity of the shelf 5G equipment and Open-
RAN-based hardware). To measure delays in the 5G system,
PTP-based time synchronization was implemented over an
out-of-band wired network, providing a time reference for all
nodes. The 5G network operated in the n78 band at 3.5 GHz,
utilizing TDD mode with 40 MHz bandwidth, 30 kHz sub-
carrier spacing and 106 physical resource blocks. All occur-
ing errors were corrected by 5G retransmission mechanisms
(HARQ)1.

1We refer the interested reader to [2] for a more detailed latency analysis.



(a) Wired bridge (b) Logical 5G bridge

Fig. 2: Port-to-port delay distributions

Figure 2 shows fundamental differences: (1) the port-to-
port delay of a logical bridge is orders of magnitude greater
(milliseconds vs. microseconds); (2) the port-to-port delay of
a logical bridge follows a heavy-tailed bi-modal distribution.
5G’s time-slotted architecture and HARQ explain the multi-
peak structure. Moreover, for a heavy-tailed distribution, the
probability of large values does not decrease exponentially, in
contrast to the exponential latency distribution of the wired
TSN bridge.

This fundamental difference in internal bridge timing raises
many questions like: (1) What is the impact of the stochastic
port-to-port onto time-driven scheduling (TAS), which relies
on precise timing? Will existing gate schedules calculated for
wired bridges still work? Note that the TAS only controls the
queuing delay. The port-to-port delay is a parameter to the
algorithms for calculating schedules. Therefore, it is expected
that port-to-port delay should have an impact either on the
safety-guarantees of non-robust schedules or the efficiency of
robust schedules. (2) What is the impact onto the performance
of applications communicating through a logical bridge? Take
as an example a networked control system with sensors and
actuators at the mobile devices and a controller on an edge
cloud server, i.e., closing the control loop over a logical 5G
TSN bridge. Delay is expected to have an impact onto the
stability and performance of the control system.

To answer these and other questions, we present an overview
of two tools that support the validation and evaluation of
systems including logical TSN bridges: (1) 6GDetCom Sim-
ulator: We added an implementation of a logical bridge to
the popular OMNeT++/INET network simulation framework.
This simulation model is focused on the realistic simulation of
port-to-port delay by integrating our data from measurements
in real 5G networks. Since the design of the logical bridge
inherits all TSN functions like the TAS from the existing TSN
bridge model, we can test the impact of port-to-port delay onto
existing TAS scheduling algorithms and new wireless-friendly
scheduling algorithms. (2) 6GDetCom Emulator: The network
delay emulator is a Linux tool—implemented as Queuing
Discipline (QDisc)—to emulated the characteristic network
delay of a 5G network from measurement data. This allows
for testing the impact of the characteristic delay onto real
applications under test.

Both, the simulator and the emulator are open source [3],

[4]. Moreover, we also provide our latency measurements from
5G networks as open data [5].

The remainder of this paper is structured as follows: In
Section II, we present an overview of the Det6G Simulator.
In Section III, we present an overview of the 6GDetCom
Emulator. Finally, we conclude this paper in Section IV.

II. 6GDETCOM SIMULATOR

In order to simulate the characteristic delay of a logical
TSN bridge, we implemented a so-called DetCom node for the
OMNeT++/INET framework. The DetCom contains one NW-
TT and multiple DS-TTs which inherit all TSN functions from
the TSN bridge model of INET, e.g., its TAS implementation.

To simulate the characteristic delay, there are two basic de-
sign options: (1) Integrating a sophisticated simulation model
of the 5G system, including anything that might introduce de-
lay in the data path, such as HARQ, physical layer simulation
models of the wireless medium, etc. We decided against this
option due to the high complexity of implementing a realistic
5G simulation model. (2) A data-driven approach, treating the
logical-bridge-internal 5G system as a “black box” that delays
packets passing through the 5G system based on realistic
latency models from measurements in real 5G networks. We
implemented this data-driven option using latency histograms
from our measurements in real 5G networks [5].

To this end, the DetCom node is extended by a so-called
Delayer component, which is located before the egress queues
of the TSN bridge. The Delayer is either configured using la-
tency histograms or delay traces from measurements. Different
configurations can be applied in upstream and downstream
direction or, in general, between different port pairs of the
logical 5G TSN bridge (DetCom node). Note that a packet
from one UE to another UE passes the wireless link to/from
the gNB two times, whereas a packet from/to the NW-TT only
traversed the internal wireless link once.

While our design allows the replay of delay traces to
simulate delay correlations between different links within the
DetCom node, one drawback remains: other configuration
parameters in the simulation, such as packet size and sending
rate, do not influence the resulting DetCom delays.

Figure 3 shows that the simulated delay of packets passing
through a DetCom node closely follows the original input
histogram from the real network.

III. 6GDETCOM EMULATOR

Figure 4 shows the architecture of the 6GDetCom network
delay emulator for Linux. It consists of two major parts: (1)
A custom Linux QDisc in kernel space emulating the delay
on the network data path between ingress and egress network
interface. (2) A user-space application generating the delays
for the QDisc.

The QDisc is attached to the data path at the egress port.
For each packet to be forwarded through the port, it reads a
delay value from a FIFO queue (delay queue). This queue is
populated with delay values in advance to ensure that packets
can be processed at high speed. Delayed packets are stored



Fig. 3: DetCom node applying delay to packets

Fig. 4: Det6G network delay emulator architecture

in the packet queue until a timer signals the release of the
delayed packet towards the network driver.

The user-space application pushes delay values via a char-
acter device to the delay queue, depending on the fill level
of this queue. The application can use any algorithm or data
set to create delay values. In particular, we can use our
delay histograms based on latency measurements in real 5G
network [5].

This QDisc-based design can be integrated easily with other
Linux features such as virtual bridges to emulate a whole
network on a single Linux host, or other QDiscs to provide
different delays to different traffic classes using QDisc filters
and dedicated delay QDiscs per class.

A drawback of this design is its limitation to independent
identically distributed (i.i.d.) latency values since delays are
pre-calculated for performance reasons.

Our evaluations show that the emulated delay of a real
5G distribution closely follows the given distribution from
measurements in a real 5G network with an offset of about
81 µs. Considering the very short delays of wired bridges in
the range of few microseconds (cf. Figure 5), we observe
another limitation: we cannot emulate the delay of wired
bridges with this software-based approach. However, wireless
logical bridges with delay values in the range of milliseconds
pose no problem.

Further information how to use the network emulator can
be found in our software repository [4].

Fig. 5: Emulated vs. original delay

IV. CONCLUSION AND FUTURE WORK

We have presented two tools for simulating and emulating
the characteristic packet (port-to-port) delay of a logical 5G
TSN bridge.

Next steps include the application of these tools to the
validation of our algorithms for calculating wireless-friendly
TAS schedules that are robust to high packet delay variation.
Moreover, we will use the emulator to evaluate the impact
of characteristic delay onto applications, such as the quality
of control of a remotely controlled exo-skeleton (networked
control system).

ACKNOWLEDGMENTS

This work was supported by the European Union’s Horizon
Europe project DETERMINISTIC6G under grant agreement
No. 101096504.

REFERENCES

[1] D. Patel, E. M. de Oca, H. N. Nguyen, J. Costa-Requena, J. Gross, G. P.
Sharma, L. Grosjean, J. Sachs, J. Harmatos, O. Höftberger, F. Profelt,
D. Puffer, D. Houatra, F. D. Simio, G. Bigoni, F. Giovacchini, and G. Bag,
“DETERMINISTIC6G use cases and architecture principles – Deliverable
D1.1 of DETERMINISTIC6G project,” https://deterministic6g.eu/images/
deliverables/DETERMINISTIC6G-D1.1-v1.0.pdf, Jun. 2021.

[2] S. Mostafavi, M. Tillner, G. P. Sharma, and J. Gross, “EDAF: An
end-to-end delay analytics framework for 5G-and-beyond networks,” in
Proceedings of IEEE INFOCOM 2024 – 11th International Workshop
on Computer and Networking Experimental Research using Testbeds
(CNERT 2024), Vancouver, Canada, May 2024, DOI: 10.1109/INFO-
COMWKSHPS61880.2024.10620853.

[3] “6GDetCom simulator,” https://github.com/DETERMINISTIC6G/
6GDetCom Simulator, last accessed March 2025.

[4] “6GDetCom emulator,” https://github.com/DETERMINISTIC6G/
6GDetCom Emulator, last accessed March 2025.

[5] “Deterministic6G measurement data,” https://github.com/
DETERMINISTIC6G/deterministic6g data, last accessed March 2025.


