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Abstract—Industry 5.0 marks a transition from the digitaliza-
tion focus of Industry 4.0 to a paradigm emphasizing resilience,
sustainability, and human-centric processes. In such dynamic
networks, reinforcement learning (RL) algorithms can play a
crucial role in enhancing performance. The paper proposes a
novel approach using a centralized RL algorithm to optimize the
medium access control for a moving autonomous guided vehicle
(AGYVY) on an industrial shop floor. This ensures uninterrupted
production flow by dynamically managing the network traffic.
The use case scenario considers a mobile AGV transmitting data
to a base station (BS) within a harsh industrial environment. It
uses the RL algorithm to dynamically select an optimal backoff
(BO) time for an ALOHA-like channel access protocol. This
enables accurate data transmission without prior knowledge of the
industrial environment. The results show an improvement of up to
34.6% in success probability compared to traditional BO design
approaches. The RL model achieves outstanding performance,
guaranteeing a minimum success probability of 99.46%.

Index Terms—RL, Industry 5.0, Backoff, THz

I. INTRODUCTION

Industrial applications pose significant challenges due to the
presence of both static and moving devices, which demand
rigorous and heterogeneous requirements in terms of data rate,
latency, and reliability [1]. Future networks will depend on 6G
technologies, leveraging terahertz (THz) frequencies to satisfy
these demands [2]. However, THz frequencies face challenges
such as high attenuation and molecular absorption [3]. In this
context, it is envisioned that the emerging paradigm of the
Industry 5.0 would enable the automation of production pro-
cesses, enhancing production efficiency, logistics, and storage.
It integrates three key components: connectivity, autonomous
cyber-physical systems, and the human in the loop. For connec-
tivity, sensors access the network via medium access control
(MAC) protocols, including contention-based protocols, such
as ALOHA [4] and carrier sensing multiple access (CSMA)
[5], as well as scheduled protocols [6]. For what regards,
contention-based protocols, ALOHA is distinguished by nu-
merous collisions, partially mitigated in the CSMA protocol
by the introduction of the sensing phase and a waiting period.
This waiting period is denoted as the backoff (BO) time [7].
We refer to BO time as BO in the rest of the paper.

The topic of BO selection has been partially addressed in the
literature, through mathematical methods [8], [9] and artificial
intelligence (AI) algorithms [10]-[13]. On the one hand, the
authors in [10] present a deep reinforcement learning (DRL)
model in which an agent seeks to select the optimal BO for
slotted ALOHA, and in [11] the same evaluation is performed
for a CSMA protocol. On the other hand, the authors in [12]
and [13] propose a Q-learning based CSMA/collision avoid-

Obstacle .
worker A BS

—— Production Line sensor *  AGV

—— Deposit

40

:

0 5 10 15 20

25 30 35 40 45 50
X [m]
Fig. 1. Industrial plant comprising production lines, obstacles, workers,
deposits, and an AGV.

ance protocol that employs a BO selection scheme by adjusting
the contention window (CW). Nevertheless, the prior works on
BO selection neither consider the simple but powerful medium
access protocol ALOHA nor do they apply these evaluations
to industrial scenarios or THz frequencies. Furthermore, these
works consider only a limited number of nodes in the network,
implying a low level of flexibility. Finally, the impact of the BO
selection and its subsequent effect on latency is not addressed.
In this paper, we address the aforementioned shortcomings in
related work on BO selection. We consider a shop floor where
an autonomous guided vehicle (AGV) is used for transporting
products between the production line and the warehouse. It
uses an ALOHA-like protocol for medium access at THz
frequencies to send data to the base station (BS) to guarantee a
satisfactory production flow. The network is highly contested,
with numerous sensors and workers transmitting data to the
BS for production and logistic tasks. Therefore, the AGV
experiences an extremely congested network, where it has to
meet the industrial processes’ requirements. The AGV has to
select an optimal BO to ensure a high success probability
and a low latency. In this highly dynamic scenario where
the AGV moves while the sensors produce dynamic traffic,
it is impossible to rely on traditional optimization algorithms.
Therefore we introduce an adaptive model that relies on Al
The main contributions of our work are as follows:

« We develop a novel RL-based BO model implemented
on the AGV which is able to learn the network traffic,



and optimize the medium access by selecting the appro-
priate BO to wait before accessing the channel using an
ALOHA-like protocol. The goal is to ensure the correct
reception of data at the BS, in a highly congested network,
without having any prior information on the number of
active nodes competing for the channel or the industrial
environment.

« We extensively evaluate the proposed algorithm exploiting
the 3DScat ray tracing (RT) tool to provide an accurate
channel model valid also at THz frequencies.

« Furthermore, we compare its performance with state-of-
the-art (SOTA) solutions, like random BO selection and
binary exponential backoff (BEB), as well as an ideal
benchmark.

The obtained results prove that the implemented model is able
to learn the traffic dynamics and select an optimal BO to access
the network. Specifically, the RL model outperforms the SOTA
benchmarks and obtains performance comparable to the ideal
ones. The paper is organized as follows; the system model
and the RL model are presented in Secs. II and III. Sec. IV
illustrates the simulation results, while Sec. V concludes the

paper.
II. SYSTEM MODEL

A. Scenario

We assume a shop floor F' comprising of P production lines,
D deposits, and O obstacles. The walls of the shop floor are
made of concrete, whereas the ceiling and the floor are made
of SOTA materials.

The production lines consisting of a variety of machines
for assembly, packaging, and measurements, are manufactured
from metal. The obstacles, which include tables and shelves,
are made of wood, while the deposits are constructed of
plywood. Furthermore, we assume the presence of W workers,
an AGV, and S sensors on the shop floor, as illustrated in
Fig. 1. The sensor nodes are distributed uniformly within
the shop floor and the production lines. The sensor nodes
distributed uniformly within the whole shop floor are called
uniform nodes (UN), whereas the sensor nodes distributed only
within the production lines are called machine nodes (MN). We
assume a BS on the shop floor. The sensor nodes, the workers,
and the AGV need to communicate their data to the BS for
the correct functioning of the production process. Hence, all
entities (including sensors, workers, and the AGV) that require
access to the BS, are classified as user equipment (UE).

B. Ray Tracing Tool

To simulate signal propagation within the shop floor we used
the 3DScat ray tracing (RT) tool. We rely on RT simulation
rather than exploiting the 3GPP channel model [14] in order to
capture the specific environment at THz frequencies. The RT
tool is described with more detail in [15], [16]. It requires a
detailed description of the shop floor layout, including building
material, obstacles, the transmitter (TX), and the receiver
(RX) nodes. The 3DScat employs a geometric approach to
simulate signal propagation, applying ray theory to derive the
received power P,, for each link. Electromagnetic parameters
of the materials in the shop floor are described using the
relative dielectric constant €, and the electrical conductivity

TABLE I
RAY TRACING MATERIALS CHARACTERIZATION

Material

€r or

Concrete | 5.24 4
Ceiling 1.52 1 1.03
Floor 273 | 1.80
Metal 0 107
Plywood | 2.71 | 0.33
Wood 1994 | 2.12

o, as listed in Table I, and derived from [17]. RT simulation
involves a total of 5 interactions, comprising 3 reflections,
1 diffraction, 1 reflection with scattering, and 4 reflections
with diffraction. This interaction setting was found to be a
suitable compromise between accurate channel prediction and
computational expenditure, since performance saturates when
at least 3 reflections are considered [15]. The 3DScat operates
in two phases, firstly the trajectories of the optical rays between
TX and RX are calculated applying an image-RT approach
according to the geometrical optics theory and its extensions,
such as the uniform theory of diffraction and diffuse scattering
models. Subsequently, field propagation and multipath effects
are evaluated.

C. Channel Model

Signal propagation in the shop floor is modeled using a
narrow-band channel model, under far field assumptions. The
signal-to-noise ratio SNR in dB is formulated as SNR =
Py, + Gy + Gy — PLs — P,, where P, represents the
transmitted power, G, and G,, are the TX and RX gains,
respectively. PLg stands for the path loss, with s representing
the line-of-sight (LoS)/non-LoS (NLoS) condition. Lastly, P,
defines the noise power. Specifically, the path loss is calculated
by adopting the close-in free space reference distance path
model, since it has proven to be superior for modeling path
loss over many environments and frequencies. It is formulated
as: PLs = ¢+ 10a5logy,(d) + &5, where ¢ = 201og, (47”)
is the path loss at a reference distance d,.y = 1m. a; is the
path loss exponent. d represents the 3D distance between TX
and RX. Lastly, & is used to account for shadow fading. &, is
modeled as a zero mean Gaussian distribution & ~ N(0, 02)

: fats ZNzl ("L‘i_/")z :
with standard deviation o5 = 1/ ==-———, where N is the

total number of values, x; represents the i-th value, and pu
is the expected value. The large-scale channel parameters o
and o are obtained from the RT simulator, as illustrated in
Table II for uplink (UL) and downlink (DL) communications
considering UN and MN sensors’ distribution. The noise
power is expressed as P, = kT.,B where k represents the
Boltzmann constant, T, is the system temperature, and B
is the bandwidth. This channel model is also applicable at
high frequencies because it has been demonstrated that THz
frequency effects, such as molecular absorption, have a limited
impact on the channel in a such moderate-sized scenario [18].

D. Traffic

It is assumed that all UEs are synchronized in time. The
UEs follow an ALOHA-like medium access protocol. They
are initiated in an idle state. Considering a real-time system,
the workers and the sensors transmit their data to the BS as



LARGE SCALE CHANNEL PARAMETERS
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Fig. 2. Flow diagram of the ALOHA-like MAC layer protocol for the AGV.

soon as it is generated. The workers generate periodic data
with a periodicity 7). The sensors generate sensing data by
dynamically changing their data generation periodicity follow-
ing a two-state Markov chain. The two states are designated
as fast and slow with data generation periodicity T’y and T,
respectively. At time ' = 0, the sensor operates in a fast
mode with probability p;, and in a slow mode with probability
1 — pin. A sensor in fast mode at time ¢ remains in the
fast mode with probability p or changes to a slow mode with
probability 1 — p at the successive time ¢’ + 1. Similarly, a
sensor in slow mode at time ¢’ remains in the slow mode
with probability g or changes to a fast mode with probability
1 — q at the successive time ¢’ + 1. The AGV follows a similar
medium access protocol as the workers and the sensors, with
one exception. The AGV does not immediately transmit its data
as soon as it is generated, rather it implements a waiting period,
i.e. a BO before transmitting its data. The AGV generates data
at regular intervals along its path within the shop floor. A
transmission is considered successful if the received SN R at
the BS is above a certain threshold SN R;; and no collisions
occur. If the transmission is successful, an acknowledgment
(ACK) is sent by the BS. Once a transmission is completed,
the UEs wait for an ACK. Whether an ACK is received or not,
the UEs transition to an idle state until new data is generated.
In the case of unsuccessful transmissions, no retransmissions
are performed. The AGV is considered an intelligent entity in
the scenario. Hence, the duration of the BO is selected using a
RL algorithm. This ALOHA-like MAC protocol for the AGV
is depicted in Fig. 2.

Parameter UL DL
UN-BS | MN-BS | AGV-BS | BS-UN | BS-MN [ BS-AGV
QOLos 1.94 2.08 1.96 1.92 2.02 1.96
QNLoS 3.35 3.75 334 3.47 3.59 343
OLoS 5.68 5.61 6.06 5.39 6.1 5.99
ONLoS 11.65 14.28 12.98 13.04 11.47 15.23
—**— III. REINFORCEMENT LEARNING MODEL
\gﬁﬁe?;‘f?d A. RL Model on the AGV
RL algorithms comprise of two principal components: the

agent and the environment [19]. The agent is the entity that
performs the actions, which in this case is the AGV. The envi-
ronment, on the other hand, encompasses everything external
to the agent. In the considered scenario, it includes the shop
floor, in particular the sensors and the workers. The learning
process starts with the agent in an initial state S;, wherein
it explores the surrounding environment. Then, it performs
an action A; that corresponds to the selection of the BO
before transmitting the data. Subsequently, the action results
in the agent being moved to a new state S;.;. While the
environment offers to the agent a reward R; [20] accounting for
the goodness of the action on the system. The time is divided in
t=1,2,..,T, discrete intervals which compose an episode.
Each interval ¢ comprises a set of ticks ¢ = 1,2,..., Tyer
and has a duration T's. In an episode, the AGV moves from
the production line to the warehouse following a defined path.
At each interval, the AGV moves and generates data, while
sensors and workers transmit based on their traffic model as
described in Sec. II-D. The learning process is designed using
a Markov decision process (MDP), which is described by the
vector (S, A¢, Ty, Ry).

e S; € § defines the space of all possible states for
an agent. In particular, S; = {zy,y:,t,g;} contains the
coordinates of the AGV at time ¢ (z,y;) obtained con-
sidering a right-handed reference system, the time instant
t, witht =1,2,...,T,,, and the produced good g;, with
gi = 1,2,..., Gmaz, that has been manufactured by the
production line P; € P and needs to be transported to the
correct deposit D; € D. Indeed, each good requires to
be transported to a specific deposit. The location of the
AGV at time ¢ is determined as (z¢,y:) = (T1—1,41—-1) +
(Azy_q1,Ay;_1). Here (24—1,y:—1) represents the previ-
ous location of the AGV at time ¢ — 1. (Azy—1, Ayi—1)
is the change in it’s location and it is calculated as the
product between the velocity vector and the interval of
time Ax;_1 = U;_1 - At.

e A; € A represents the set of actions that the AGV
can perform. It consists of a discrete set of BOs A; =
{1,2, ..., TBO,max } expressed in tick, with duration ¢'.

o T, is the transition probability function. It models the
dynamics of the environment by returning the probability
of transitioning to a new state Sy;1, given an action A,
and an initial state S;.

e R; € R is the reward and it is a fundamental parameter
for the learning process. In particular, —1 is assigned in
case the message sent by the AGV to the BS collides, and
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r— otherwise. The reward was designed ad-hoc with
the aim of minimizing the selected BO and therefore the
medium access delay and latency while maximizing the
success probability.

—1 if AGV message collides
Ry = { - otherwise M

Ttot

with 7 = TBO + Ttr,DAT A +2- Tprop + Tproc + Ttr,ACK
and Tyt = TBO,MAX + Ter,DATAMAX + 2 Tprop,MAX +
Tproc + Ter,ACK,MAXx. Specifically, Tpo represents the BO
selected by the RL agent, 74, paTa = PDTA:A is the time
needed to transmit a message of size Ppara with a data rate
Ry, Tprop defines the propagation delay which depends on the
relative distance between BS and AGYV, 7,,,. represents the
processing time at the BS, and 7, acx stands for the time
needed to transmit an ACK of size Pjsox with a data rate
Ry,. As for the normalization parameters, Tgo,pm Ax represents
the maximum BO which can be selected by the RL agent,
Ter, DATA,MAX 18 the time needed to transmit a message of
maximum size Ppara,max with a data rate Ry, Tprop,max
defines the propagation delay referred to the farthest location
with respect to the BS, and 7 ackx, max stands for the time
needed to transmit an ACK message with data rate RR,. The
goal of the RL algorithm is to identify the optimal policy
7o (St, Ar) which maximizes the cumulative discounted return
Go = > 14 yRy, with v € [0,1) being the discount factor,
a parameter which balances the importance of immediate and
future rewards.

B. RL Algorithm

The RL algorithm exploited in this work is the advantage
actor critic (A2C) [21] which is a DRL algorithm that uses
a synchronous gradient descent to optimize deep neural net-
works. This algorithm’s network comprises two sub-networks:
the actor and the critic. This architecture is helpful in reducing
the variance of the RL algorithm by stabilizing and fastening
the training process. Hence, the simultaneous operation of the
actor and critic facilitates the exploration of diverse regions of
the environment through the exploitation of policy-based and
value-based methods. Specifically, the training process evolves
as follows; at each time step ¢ the RL agent comprising the
actor and the critic observes the current state S, then the actor
performs an action A; according to its policy mg (S, A;) which
is the mapping from the state S; to the action A;. The action
is used by the critic to compute the value of taking that action
at that state, also known as the V-function, V' (.S;). Therefore,
the critic observes the action and provides feedback, while
the actor updates its policy parameters using the advantage
function. The latter is preferred with respect to the action
value function to enhance the stability of the learning process.
The advantage function calculates the advantage obtained in
taking that action in that state with respect to the average
value of the state. It is obtained by subtracting the mean
value of the state from the state action pair: A(S¢, A;) =
Q(St, Ar) — V(St) = Go + YV (St+1) — V(St). Therefore,
the parameters of the actor are updated as follows: Af =
NVo(log me(St, Ar))A(Se, Ar), with 1) being the learning rate.
While those of the critic are updated exploiting the following

formulation A¢ = nA(S;, A)V4V (S:). Thus, in the actor-
critic there are two function approximations and therefore two
neural networks: a policy my(S;, A¢) that controls the agent
actions and a value function V'(S;) used to assist the policy
updates by measuring the goodness of the action performed.

IV. SIMULATION RESULTS

This section describes the results obtained by exploiting the
A2C algorithm as RL model to predict the traffic dynamics,
selecting an appropriate BO, and guaranteeing the accurate
reception of data by the BS. Table III lists the parameters
utilized to simulate the channel model, the MAC layer, and
the RL algorithm in the considered scenario. Specifically, the
implemented RL-based BO model was compared to a series of
benchmarks:

(i) First, an ideal benchmark (termed as oracle) that assumes
that the AGV always chooses the optimal BO;

(i1) Second, a random BO model (named as random) where
the BO is chosen randomly;

(iii) Third, the BEB model [22], which is characterized by a
variable CW depending on the collisions experienced by
the AGV. In detail, the AGV selects a random BO value
within the interval [1,2'C], where i = 2, 3,4 determines
the maximum number of acceptable collisions and C'
defines the size of the CW. To perform a fair comparison,
it is necessary to ensure that 2°C' is equal to the maximum
BO TBo,mas that can be selected by the RL-based BO
model.

Fig. 3 illustrates the evolution of the cumulative reward R
as a function of the number of episodes N, for the proposed
RL-based BO model and the different benchmarks for the
UN and MN sensor distributions. Here, for the BEB models
the maximum number of acceptable collisions is equal to
1 = 2 (BEB2), « = 3 (BEB3), and + = 4 (BEB4). The
cumulative reward is calculated as R = ZtT;‘i Ry, by summing
the individual rewards R; obtained at each time step ¢ of
an episode with duration T¢,, as given in Eq. (1). It can be
seen that the reward achieved by the RL-based BO model is
only slightly lower as compared to that for the oracle (ideal
benchmark), with a difference of AgL’DraCle = 2.39%. As a
result, the model can learn the BO by adapting to the changes
in the scenario. Moreover, after converging the RL-based BO
model is able to achieve a significantly enhanced performance
as compared to the non-ideal benchmarks. Their behavior
remains constant over the number of simulated episodes. In
particular, the RL model is characterized by an improvement
of AgL’m"dom = 76.74% with respect to the random BO
model, AB%L’BEBQ = 67.01% with respect to the BEB2 model,
AELBE = 40.1% with respect to the BEB3 model, and
AREFPEBL — 82 89% with respect to the BEB4 model. It
can be observed that the BEB4 model exhibits the poorest
performance. The reason is that the BEB4 begins with a CW
significantly smaller than the other BEB models, resulting in
a shorter BO and consequently a higher collision probability.
The random BO model performs slightly better than the BEB4
model. Whereas the BEB2 and BEB3 models perform better
than the random BO model and the BEB4 model. This result
is quite intuitive, as an adaptive model, if not characterized by
a low CW, leads to better results than a random BO selection.



Additionally, one can observe a higher reward for the non-ideal
BO models for the MN sensor distribution when compared to
the UN sensor distribution. This may be attributable to a higher
success probability resulting from the particular distribution
of sensors in clusters within the production lines. However,
this difference is not observed for the oracle, which exhibits
the same performance for both sensor distributions. The same
applies to the RL-based BO model. This means that the RL-
based BO model can choose the optimal BO and is robust to
different sensors’ distribution.

Fig. 4 depicts the variation of the success probability pgqyc
against the number of episodes for the different BO models.
The success probability is defined as the ratio between the
number of correctly acknowledged transmissions and the total
attempts pgye = NZM It can be seen that the RL-based BO
model highly differs from the non-ideal benchmarks, leading
to an improvement of ARL-random — 31 03% with respect to
the random BO selection, ARL-BEB2 — 97 50% with respect
to the BEB2 model, AL il _ 17.09% with respect to
the BEB3 model, and A%L BEB4 — 34 6% with respect to the
BEB4 model. The RL-based BO model achieves a performance
highly comparable to that of the oracle, with a difference of
just AltL-oracle — (.51%. Particularly, the RL model is able to
guarantee a minimum success probability of pg,. > 0.9946.

Fig. 5 shows the mean selected BO in an episode along an
entire simulation for the algorithms described above. The mean

selected BO is formulated as BO = T2 BOs = 9 and measured
in ticks, where BO; is the BO chosen at tlme instant ¢ € Ty,
As anticipated, the random BO model demonstrated an average
value of selected BO equal to half (BOTendom = 25() ticks)
of the maximum BO (TBo,max = 500 ticks). In contrast, the
BEB2, BEB3, and BEB4 models exhibited a lower selection
of BO which is BOBEB2 = 166.39 ticks, BOBEB3 = 86.11
ticks, and BOBEB4 = 5477 ticks, respectively, and that
clearly depends on the CW. It is worth mentioning that
although BEB3 and BEB4 models offer the possibility of
selecting a shorter BO with respect to the proposed RL-based
BO model, they are not able to provide adequate performance.
Particularly, they offer a lower success probability equal to
pBEB3 = 0.82 and pBEBY = 0.64, which is insufficient for
industrial applications that impose extremely high reliability.
The proposed RL-based BO model is instead able to provide
adequate success probability with a limited mean selected BO
of BORL =90.1 ticks.

V. CONCLUSIONS

This paper implements an innovative RL-based ALOHA-
like MAC protocol with BO selection. The main goal is to
optimize the network access to guarantee a continuous and
satisfactory production flow in the shop floor of Industry
5.0. The channel model is simulated using an RT tool to
accurately model the signal propagation at THz frequencies.
An ALOHA-like MAC protocol with a BO before transmission
is considered for an AGV in the shop floor. The RL algorithm
learns the network dynamics and selects the BO for the AGV
to access the network, without any prior information about
the industrial layout. The RL algorithm implemented on the
AGYV is the A2C. The developed model is compared against
an ideal benchmark, a random BO selection, and a BEB model

—— UNRL —— UN oracle —— UN random —— UN BEB2 —— UN BEB3 —— UN BEB4
—=+ MNRL——" MN oracle == MN random == MN BEB2——- MN BEB3——- MN BEB4

Nep
Fig. 3. Comparison of the reward evolution with the number of episodes
considering the implemented RL algorithm for intelligent BO selection, oracle,
random BO, BEB2, BEB3, and BEB4 models.

—— UNRL —— UNoracle —— UN random —— UN BEB2 —— UN BEB3 —— UN BEB4
——" MNRL——" MN oracle——+ MNrandom ——* MN BEB2——" MN BEB3——" MN BEB4

Fig. 4. Comparison of the evolution of the success probability with the number
of episodes considering the implemented RL algorithm for intelligent BO
selection, oracle, random BO, BEB2, BEB3, and BEB4 models.

—— UNRL —— UN oracle UN random UN BEB2 —— UN BEB3 —— UN BEB4
—=+ MNRL—— MN oracle == MN random ==+ MN BEB2——- MN BEB3—— MN BEB4

250

BO in ticks

Fig. 5. Comparison of the evolution of the mean BO chosen with the number
of episodes considering the implemented RL algorithm for intelligent BO
selection, oracle, random BO, BEB2, BEB3, and BEB4 models.

accepting a different number of collisions. It can be seen in the
results, that the implemented algorithm highly outperforms the
non-ideal benchmarks, demonstrating an improvement in the
success probability up to 34.6% and guaranteeing a minimum
reward enhancement of 40.1%. Furthermore, the RL model
obtains exceptional performance, highly comparable with those
of the oracle, attaining a difference in terms of reward and
success probability of 2.39% and 0.51%, respectively, while
guaranteeing a minimum success probability of 99.46%.
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TABLE III

SIMULATION PARAMETERS

Layer Parameter Notation Value
Shop Floor Size F,xF,XF, 50x40x10 m?
Production Line Size P,xP,xP, 10x5x3 rrf
. Deposit Size D,xD,xD. 5x5x3 m
Scenario Obstacle Size 0.x0,0- 2x2x2 m®
AGV Size VexV,xV, Ix1x1 m?
Number of Sensors S 100
Number of Workers W 4
BS Transmitted Power Pz B3 30 dBm
AGYV Transmitted Power Pix acv 15 dBm
Sensors Transmitted Power iz, sens 0 dBm
Ch | Workers Transmitted Power s, work 0 dBm
anne BS Transmission and Reception Gains Giz.8s = Gra.Bs 10 dB
Model AGV Transmission and Reception Gains | Gz acv = Gra.acy 5 dB
Sensors Transmission and Reception Gains tw,sens = Gra,sens 0 dB
Workers Transmission and Reception Gains to,work = Gra work 0 dB
Carrier Frequency . 300 GHz
Bit Rate Ry 50 Gbit/s
SNR of Threshold SNRn -70 dBm
ACK Size Pack 10 B
Data Size Ppara 20 B
BEB2 CW SIZC CBEBQ 125
BEB3 CW Size CpEB3 62
BEB4 CW Size CBEB4 31
Simulation Time Ts 0.00005 s
MAC Workers Transmission Periodicity Tw 3.94-107" s
Slow Modality Transmission Periodicity T 7.04-107" s
Fast Modality Transmission Periodicity Ty 3.82-107" s
Fast and Slow Modality Probabilities D, q 0.5
Initial Nodes Probability to be in Fast Mode Din 0.5
Maximum BO Duration in Ticks TBO,max 500 ticks
Tick Duration t' 1.6-10° s
Neural Network NN 32x32
Learning Rate n 0.001
RL Discount Factor ~ 0.5
Episode Duration Tep 17
Number of Episodes ep 500

within the DETERMINISTIC6G project under grant agreement
No. 101096504, and under the Italian National Recovery and
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