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Abstract—Trustworthiness is emerging as a critical design
objective for 6G networks, ensuring consistent and reliable
performance under dynamic conditions. While several studies
have addressed its evaluation, enhancing trustworthiness through
intelligent network optimization remains largely unexplored. This
paper proposes a deep reinforcement learning-based scheduler
that integrates environmental-aware knowledge from channel
knowledge maps to optimize reliability, availability, and fairness
aspects of trustworthiness. Compared to the round-robin sched-
uler, the proposed method improves reliability by over 300%
with only an 8% drop in availability. Relative to proportional
fair, it improves availability and fairness by 61.4% and 40.6%,
respectively, with just a 4.5% reduction in reliability. These
results demonstrate a balanced and effective environmental-
aware scheduling solution for trustworthy 6G.

Index Terms—Trustworthiness, Reliability, Availability, Fair-
ness, Reinforcement Learning, Environmental-aware knowledge.

I. INTRODUCTION

THE vision for 6G networks extends beyond throughput
and latency improvements, aiming for consistent trust-

worthy operation, defined as predictable performance of the
network under dynamic conditions [1]. While several studies
have addressed the evaluation of trustworthiness in commu-
nication and networking systems, enhancing it through intel-
ligent network optimization remains largely unexplored. To
this end, recent discussions propose incorporating a dedicated
trustworthiness management layer within 6G architectures,
guiding key network functions and tasks such as scheduling,
resource allocation, and routing [2].

This work focuses on the scheduling task, proposing a novel
framework that enhances trustworthiness in terms of reliability,
availability, and fairness. Conventional schedulers primarily
optimize standard network performance indicators, such as
throughput and latency. In contrast, this paper defines mea-
surable trustworthiness indicators and aims to enhance them
via an intelligent, environmental-aware network scheduler. The
considered trustworthiness indicators in this paper are service
reliability, which reflects the system’s ability to maintain
uninterrupted connectivity, service availability, referring to the
timely provision of requested services, and fairness, which
ensures equitable service access across nodes [3].

The considered scenario consists of mobile nodes experienc-
ing time-varying channel conditions, significantly influenced
by changes in the surrounding physical environment. Recent
advances in integrated sensing and communication (ISAC) and
multimodal sensing have highlighted the benefits of leveraging
environmental-aware knowledge (EaK) for network optimiza-
tion [4]. The proposed scheduler incorporates the EaK, derived

from channel knowledge map (CKM) based on site-specific
line-of-sight (LOS) or non-line-of-sight (NLOS) conditions, to
enhance reliability, availability, and fairness. These objectives
often conflict with each other, i.e., favoring nodes with reliable
communication channels may reduce availability for others
or lead to unfair access, making the task inherently multi-
objective. A deep reinforcement learning (DRL) method is
introduced to find a solution for this multi-objective optimiza-
tion. The agent learns to improve reliability by serving nodes
in LOS regions, enhancing availability by prioritizing nodes
approaching NLOS, while preserving fairness across the nodes
in the network.

II. SYSTEM MODEL

We consider frequency division duplexing (FDD) downlink
communication in a cellular network, where the base station
(BS) communicates with K moving nodes in a dynamic
environment. Our scenario is assumed to be interference-free.
The BS has access to the CKM that reflects the channel
conditions for the entire environment. Based on this CKM,
the BS can determine the current channel state for each node
and generate short-term predictions based on their movement
trajectories. In many controlled environments, such as factory
floors, node mobility follows predictable paths, enabling tra-
jectory estimation from periodic position updates.

To model EaK, we adopt a simulation-based frame-
work using the 3rd generation partnership project (3GPP)
2D geometry-based stochastic channel model (GSCM).
This model captures realistic multipath propagation through
location-dependent statistical distributions. These statistical
distributions are parameterized by site-specific measurements,
reflecting a realistic behavior of the propagation environment.
Spatial consistency is maintained in the simulation, reflecting
how neighboring positions share similar propagation effects.
Following the probabilistic sampling method in [5], a binary
CKM is generated to represent LOS/NLOS states across the
environment (see an example of a binary CKM in Fig. 1). The
LOS/NLOS state of each node k at transmission time interval
(TTI) t, denoted by q(t, k), serves as the primary input to the
proposed environmental-aware scheduler.

III. PROPOSED METHOD

The environmental-aware scheduler aims to find a policy
to select nodes to be served in each TTI t, in a way that
enhances reliability, availability, and fairness. We propose a
DRL method to find the solution for this multi-objective opti-
mization task, wherein the reward function is a weighted sum
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(a) an example of a binary CKM and random node traces of 5 nodes.
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(b) LOS or NLOS states for a random node trace marked in red from Fig. 1a.

Fig. 1: A binary CKM for a 300× 300 m2 area with a resolution of 1 meter,
where the black circle at the center shows the BS, and dark blue and light
blue represent LOS and NLOS states, respectively.

of these three objectives. The proposed DRL model consists
of an environment, a DRL agent, and a reward function. The
agent interacts with the environment and learns how to select
nodes at each environment condition to maximize rewards by
improving communication reliability and availability while en-
suring fairness. Fig. 2 shows the architecture for the proposed
method.

We define matrix S(t), with dimensions (T + 2) × K, as
the state of the environment at TTI t, where the kth column
correspond to the kth node and is defined as

s(t, k) = [h(t, k), s(t, k), s(t+ 1, k), . . . , s(t+ T, k)], (1)

with s(t, k) = 1 or 0, if q(t, k) is equivalent to LOS or NLOS,
respectively. Similarly, s(t+ i, k), i = {1, . . . , T} are the pre-
dicted LOS or NLOS states of the kth node in the T upcoming
TTIs. h(k, t) ∈ {0, . . . , L} denotes the number of TTIs the
kth node has been served over the past L transmissions. For
simplicity, we assume only a single node is served at each TTI.
Thus, the RL agent observes at each TTI the state S(t) and
selects the current action a(t) ∈ {1, . . . ,K} that maximizes
the expected reward, i.e., it chooses a single node to be served.
A feedforward neural network (FNN) approximates the action-
value function by mapping the vectorized state S(t) to Q-
values for all possible actions. At each TTI, the agent selects
an action following the ε-greedy policy.

To encourage the agent to take an action that leads to
maximum reliability, availability, and fairness, the reward
function at TTI t is defined as

r(t) = c1Rel(t) + c2Avl(t) + c3Fair(t). (2)

The parameters c1, c2, c3 are positive scalar weights that align
the reward function with the objectives. At each TTI t, the
reliability score, i.e. Rel(t), is one if the selected node to be
served is located in LOS state, i.e q(t, a(t)) ≡ LOS. The agent
does not receive a reliability-related reward if q(t, a(t)) ≡
NLOS but there are no other nodes in the LOS state in time t.

Fig. 2: The proposed environmental-aware scheduler for trustworthy 6G
networks based on DRL.

Finally, Rel(t) = −1 if q(t, a(t)) ≡ NLOS, even though other
nodes in LOS states are available.

Enhancing service availability requires a reduction of time
between access (TBA) for all nodes evolved in the network,
where TBA(t, k) represents the number of TTIs that have
elapsed from the latest access of the kth node to the network,
measured at TTI t. It means if the kth node is served at TTI
t, then TBA(t, k) = 0; otherwise, it grows as TBA(t, k) =
TBA(t − 1, k) + 1. We define ζ as the threshold for the
acceptable number of TTIs between accesses. If the TBA
for a node exceeds this threshold, the service for that node
is considered unavailable. To enhance availability, the agent
prioritizes nodes transitioning from LOS to NLOS, taking
their movement trajectories into account. This prioritization
is essential because delaying service for these nodes reduces
their chances of being served in future TTIs, as their service
reliability scores decrease over time due to their movement.
Thus, the agent earns an extra corresponding reward for
selecting a node in LOS that is transiting to NLOS state within
the next T TTIs, with

Avl(t) =

{
1∑T

i=1 s(t+i,a(t))
, if q(t, a(t)) ≡ LOS

0, Otherwise
. (3)

Finally, actions that improve network fairness result in greater
reward, following Jain’s fairness index [6]:

Fair(t) =

(∑K
k=1

∑t
τ=t−L

(
a(τ) ≡ k

))2

K
∑K

k=1

(∑t
τ=t−L

(
a(τ) ≡ k

))2 , (4)

where a(τ) ≡ k evaluates to one if true, and zero otherwise,
and L denotes the number of TTIs considered as the recorded
history at the BS.

IV. SIMULATION RESULTS

The CKM simulation is based on the urban micro (UMi)
scenario specified in 3GPP TR 38.901 and the implementation
from [5]. The simulation setup includes K = 5 nodes, and
the history and prediction lengths are both set to 10 TTIs,
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Fig. 3: Average performance comparison between the proposed algorithm and
RR and PF methods.

i.e. T = L = 10. The DRL agent uses a discount factor
γ = 0.95, a learning rate of 0.1, and a target network update
every 100 steps. Following a trial-and-error approach, the
reward weights are set as c1 = 5, c2 = 10, and c3 = 5,
with ζ = 40 controlling the sensitivity to availability gaps.
The DRL scheduler undergoes training for 1000 iterations,
with a new 300 × 300m2 2D map randomly generated for
each iteration. Node initial positions and movement angles
are sampled from a uniform distribution, while the BS remains
fixed at the map centre. For each iteration, nodes move for 200
steps (200TTIs), with their movement trajectories assumed to
be known for T future TTIs. All nodes are configured with
identical traffic and service requirements.

We compare the performance of the proposed method with
two well-established scheduling techniques in the literature:
round robin (RR) and proportional fair (PF) [7]. In this
scenario, RR aims to maximize service availability and fair-
ness by serving nodes in a fixed, regular order, while PF
prioritizes service reliability by favoring nodes with better
channel conditions. In contrast, the proposed method strikes a
balanced trade-off between reliability, availability, and fairness,
positioning itself between RR and PF. Fig. 3 illustrates the
average performance over 1000 randomly generated envi-
ronment conditions, each with varying initial node positions
and movement trajectories. Compared to RR, the proposed
method maintains the same level of fairness while boosting
reliability by over 300%, at the cost of a slight 8% reduction
in availability. When compared to PF, it improves availability
and fairness by 61.4% and 40.6%, respectively, with only a
minor drop in reliability of approximately 4.5%. Note that the
maximum achievable value for each criterion is one. The radar
chart in Fig. 4 visually demonstrates the performance balance
among the schedulers. It shows that the proposed method
occupies a significantly larger triangular area compared to
the other methods, confirming its ability to maintain a more
balanced performance across all criteria. Additionally, Fig. 5
compares availability across all methods as parameter ζ varies.
As expected, availability improves for all methods as the
threshold ζ increases, with the proposed method approach-
ing the availability level of RR. However, the choice of ζ
should be application-specific, as it defines what constitutes
acceptable service delay and directly impacts how availability
is measured.

V. CONCLUSION

This paper proposed a DRL-based scheduling strategy that
leverages current and near-future environmental-aware knowl-
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Fig. 5: Availability versus threshold TBA value ζ.

edge to optimize reliability, availability, and fairness. The
proposed scheduler can be integrated into future network
management frameworks, supporting the vision of trustworthy
communication in 6G. Simulation results confirm its effec-
tiveness in balancing reliability, availability, and fairness. As
future work, we plan to extend the approach to multi-node
scheduling and evaluate its performance in more diverse node
requirements, while also incorporating additional trustworthi-
ness criteria such as security and privacy.
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