
A Framework for In-network Inference using P4
Huu Nghia Nguyen, Manh-Dung Nguyen, EdgardoMontes de Oca

firstname.lastname@montimage.com
Montimage
Paris, France

ABSTRACT
Machine Learning (ML) has been widely used in network security
monitoring. Although, its application to data intensive use cases
and those requiring ultra-low latency remains challenging. This is
due to the large amounts of network data and the need of trans-
ferring data to a central location hosting analysis services. In this
paper, we present a framework to perform in-network analysis by
offloading ML inference tasks from end servers to P4-capable pro-
grammable network devices. This helps reduce transfer latency and,
thus, allows faster attack detection and mitigation. It also improves
privacy since the data is processed at the networking devices. The
paper also presents an experimental use-case of the framework to
classify network traffic, and to early detect and rapidly mitigate
against IoT malicious traffic.

KEYWORDS
In-network inference, programmable network, open-source, P4,
attack detection, IoT networks
ACM Reference Format:
Huu Nghia Nguyen, Manh-Dung Nguyen, EdgardoMontes de Oca . 2024.
A Framework for In-network Inference using P4. In The 19th International
Conference on Availability, Reliability and Security (ARES 2024), July 30-
August 2, 2024, Vienna, Austria. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3664476.3670453

1 INTRODUCTION
Recently, ML approaches have been successfully applied in differ-
ent domains and have shown significant breakthroughs. They have
been applied to different applications in networking, ranging from
traffic classification and anomaly detection to network configura-
tion and orchestration. A ML-based application usually consists of
2 main steps: model preparation and inference. The former consists
of preparing data, training and optimising ML models. The latter
deploys the obtained models to production to receive input data,
make predictions, and return results.

Furthermore, Software Defined Networking (SDN) is pushing
an emerging approach to network management by decoupling
control and data planes. SDN enables greater automation, flexibility,
and scalability in network management. It helps to reduce the
need of dedicated hardware devices by introducing programmable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2024, July 30-August 2, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1718-5/24/07. . . $15.00
https://doi.org/10.1145/3664476.3670453

devices to process and control network traffic. It allows network
administrators to centrally manage and program network behavior
via a software-based controller, such as managing the flow of data
traffic (data plane) and making decisions about how it should be
forwarded based on network policies and configurations.

However, only the control plane has been programmable in SDN.
The data plane was not programmable in a flexible way, and allowed
only the pre-configured policies and configurations. Applying ML
to data intensive networking use cases and those requiring ultra-
low latency is challenging because the inference step is performed
at a central location hosting analyses services in the control plane.
This requires transferring data extracted from the data plane. The
prediction results are then used to reprogram the data plane via
the controller. This Round-Trip Time (RTT) causes delays in the
closed-loop detection and mitigation process. To improve this, there
is a need to perform ML inference at the data plane.

Programming Protocol-independent Packet Processors (P4) [3]
is a domain-specific language for network devices, specifying how
data plane is to be processed by networking devices, such as, switches,
routers, filters, etc. Thus, it opens new possibilities for flexible and
dynamic programmable data planes, such as, performing the ML
inference. Offloading ML inference from the control plane side to
the data plane side helps not only reducing RTT delay in the closed-
loop but also avoiding privacy issues because data is processed only
by the the data plane devices.

This paper presents a complete open-source framework to per-
form ML-based inference at the data-plane using P4. Especially, we
make the following contributions:

• We extend our existing tool, Montimage AI Platform (MAIP)
[12], to deal with Decision Tree (DT) models. MAIP provides
users with easy access, through a friendly and intuitive user
interface, to prepare ML models and understand the mod-
els using Explainable Artificial Intelligence (XAI). We also
enhance it to give users the ability to select features to be ex-
tracted from .pcap files, and to tune parameters for training
models.

• We propose a new transformation of a DT model to a single
Match-Action (MA) table to reduce the number ofMA entries
and table lookup.

• We implement the framework1 and demonstrate its applica-
tion via a network traffic classification use-case. The use-case
is deployed in a Raspberry Pi to act as a smart IoT gateway
to be able to swiftly detect and react against malicious IoT
encrypted traffic.

This paper is structured as follows. Section 2 discusses the state
of the art and the related work. Section 3 describes the proposed
framework and its detailed components. An application user-case of
1The framework is freely available at https://github.com/montimage/maip and
https://github.com/montimage/in-network-inference-using-p4

https://doi.org/10.1145/3664476.3670453
https://doi.org/10.1145/3664476.3670453
https://doi.org/10.1145/3664476.3670453
https://github.com/montimage/maip
https://github.com/montimage/in-network-inference-using-p4

ARES 2024, July 30-August 2, 2024, Vienna, Austria Huu Nghia Nguyen, Manh-Dung Nguyen, Edgardo Montes de Oca

the framework will be introduced in Section 4. Section 5 concludes
the paper.

2 RELATEDWORK
We summarize in this section two main approaches related to our
framework: XAI and offloading ML inference to programmable data
planes. The former helps to better understand trained ML models,
thus easily optimise them. The latter helps to more rapidly detect
anomalies and mitigate them.

2.1 Explainable AI
XAI [2] aims to make Artificial Intelligence (AI)/ML black-box mod-
els more transparent by explaining why decisions are made. Across
various domains, AI/ML plays a crucial role, but trust and trans-
parency are essential for its future applications. These models are
usually complex and not easily interpretable due to their multiple
layers and hyperparameters. This complexity hinders both users
and developers from understanding and improving their accuracy
and performance. Therefore, incorporating explainability on top
of these models is necessary to provide post-hoc explanations and
enhance interpretability. Notable post-hoc explainability methods
include visual explanations, local explanations, explanations by
example, and feature relevance explanations.

Local explanations seek to approximate explanations within less
complex solution sub-spaces by considering only a subset of data.
One popular technique is Local Interpretable Model-agnostic Expla-
nations (LIME) [15], which interprets outputs of black-box models
across various fields.

Feature relevance explanations involve computing relevance scores
for model features to quantify their contribution or sensitivity to
the model’s output. Shapley Additive Explanations (SHAP) [10]
is a popular XAI technique utilizing cooperative game theory to
identify the importance of each feature value in a prediction. Ad-
ditionally, Permutation Feature Importance is a global XAI method
that measures changes in prediction error when feature values are
randomly permuted.

Explanations by example focus on extracting representative data
examples that relate to a model’s generated result, thereby enhanc-
ing understanding. Methods within this category include counter-
factual explanations [18] and adversarial examples.

2.2 Offloading ML Inference to Programmable
Data Planes

Data plane programmability allows the network owner to define
data plane functionality using software artifacts running on pro-
grammable networking devices. P4 [3] is a domain-specific lan-
guage used for programming these devices to process packets. A
key feature of the P4 language is protocol independence. It sup-
ports flexible interaction between the programmable data plane
and control plane, which enables coordination between the control
logic and packet processing logic on devices.

Although a P4 program is independent from a device running it,
its compilation needs to follow the packet processing architecture
of the device. This architecture defines the high level structure
of the device, and the interfaces between its major components.
The most common architecture is the Protocol Independent Switch

Architecture (PISA), which generalizes the Reconfigurable Match-
Table (RMT) [4] model and provides essential line-rate packet pro-
cessing features. In the PISA architecture, packets go through a
packet parser, which instantiates user-defined protocols. After the
parser processes a packet, it follows a pipeline of control flows and
MA tables. Finally, packet headers are emitted by a deparser.

MA table is the core mechanism for processing packets [3]. It’s
basically a hash lookup table, in which an entry consists of a key to
match against an input and a value is an action to be executed. MA
table is usually used to define a set of rules to check the packet’s
header fields against a set of predefined criteria. The matching
criteria can be exact, range, lpm and ternary to match exactly a
given value, a given range of values, a longest prefix and a ternary
respectively. If the packet matches a rule, an Action is taken, such
as, modifying the packet’s headers, copying the packet, dropping
the packet, forwarding it to a particular port, or any other defined
operations that can be applied to the packet within the switch. Users
can use Actions to implement different logic, such as, performing
Distributed Denial of Service (DDoS) attack detection and reaction
at the edge [13], performing in-band network telemetry [11], im-
plementing a Time Sensitive Networking (TSN) mechanism [8], or
even performing in-network ML inference [1, 7, 19, 20] which will
be subsequently detailed.

In-network ML inference refers to the process of offloading ML
inference to networking devices [21]. It provides line rate ML infer-
ence on programmable network devices within the network. This
is different from traditional ML services that train and deploy mod-
els either on a server or an accelerator, e.g., GPU, using complex
frameworks such as, Sklearn2, TensorFlow3. Here, in-network ML
first trains a model on a server at the control plane, then translates
the model to a set of MA entries to define packet processing logic,
and finally loads the entries to do inference on a network device, at
the data plane.

The authors in [19] present algorithms, called IISY, to transform
different ML models, such as, Decision Tree, SVM, K-mean, Naïve
Bayes. The authors also propose an evaluation prototype of the al-
gorithms. IISY then follow different approaches to apply in-network
ML inference to differentMLmethods, such as, supervised, unsuper-
vised, reinforcement, or distributed learning. Two surveys [14, 21]
summarise these approaches.

The existing approaches mainly focus on tree-based ML models,
such as, DT or Random Forest (RF) due to their simple logical
structure and limited operations involved at networking devices [1].
SwitchTree [7] extends [19] and deals with RF models by using
range to match a range of values, instead of exact as in IISY, to
reduce number ofMA entries. Although, these approaches need𝑛+1
MA tables to map a tree of 𝑛 features. Our transformation requires
only a single MA table, thus reducing the number of pipelines to
be executed when performing table lookup. The authors in [20]
focus on implementing a mechanism of seamless updates of in-
network ML inference models at runtime. The authors in [1] deal
with the challenges and experiment the in-network ML inference
on a P4-enabled hardware switch.

2https://scikit-learn.org
3https://www.tensorflow.org

A Framework for In-network Inference using P4 ARES 2024, July 30-August 2, 2024, Vienna, Austria

ML Inference

Control plane

Data plane

traffic

P4 switch

Controller

D
ep

ar
se

r

P
ar

se
r

Extract & compute
features

Train & optimize
model

MAIP
.pcap.pcap.pcap .csv

 .cfg

Extract &
compute
features

1 2

3

4 5 6 7
M A

M A

M A

Figure 1: Overview of the framework

3 SYSTEM DESIGN
Figure 1 represents an overview of the framework and its compo-
nents. The framework consists mainly of two parts, model prepa-
ration and in-network ML inference. The model preparation, in-
cluding blocks ① and ②, is done offline at the control plane. The
in-network ML inference, blocks ④,⑤,⑥, and ⑦, is done online at a
P4-enabled switch to verify network traffic against the model. The
communication between the control plane and the data plane is
done via a controller in ③. We will detail these blocks subsequently.

3.1 Offline Model Preparation
The blocks ① and ② show the extract feature process and model
training process, respectively. We follow the standard ML pipeline
and implement the two processes in MAIP [12], which is an open
source ML-based framework for anomaly detection in encrypted
traffic with high performance, explanation and robustness against
adversarial attacks. It also provides an intuitive and user-friendly
interface to access a range of ML services, including feature ex-
traction, model building and storing, adversarial attack injection,
explanation generation, and AI models evaluation using different
quantifiable metrics.

The block ① employs our open source tool MMT-Probe4 to parse
raw network traffic in .pcap files, extract the needed information,
compute the features required for training ML models, and, then
translate them into a numeric form in Comma-Separated Values
(CSV) format. Specifically, MMT-Probe is a monitoring and data
extraction software that parses network traffic to extract network
and application-based events, such as protocol field values and
statistics. It allows parsing a variety of network protocols, e.g., TCP,
UDP, HTTP, andmore than 700 others, for the purpose of extracting
metadata. The features consist of multiple parameters that can be
directly extracted from raw traffic, such as, IP addresses, packet
size, etc, or calculated from the extracted values, such as, variation
of packet sizes, Inter-Arrival Time (IAT) showing the time intervals
between successive arrivals of packets or events, etc.

The block ② aims to train, fine-tune, and optimize ML models
in a closed-loop manner. It employs popular XAI methods such as
SHAP to identify a list of the most important features contributing
to the models’ predictions. Based on post-hoc insights provided by

4https://github.com/Montimage/mmt-probe

class 1 class 2

class 1 class 3

class 1

Path Class
(f1 ≤ x1) and (f2 ≤ y1) 1
(f1 ≤ x1) and (y1 < f2) 2
(x1 < f1) and (f1 ≤ x2) and (f2 ≤ y2) 1
(x1 < f1) and (f1 ≤ x2) and (y2 < f2) 3
(x1 < f1) and (x2 < f1) 1

f1 ≤ x1

f2 ≤ y1 f1 ≤ x2

f2 ≤ y2 Match-action entries
range of f1 range of f2 class

[0, x1] [0, y1] 1
[0, x1] [y1+1, Ymax] 2

[x1+1, x2] [0, y2] 1
[x1+1, x2] [y2+1, Ymax] 3

[max(x1,x2)+1, Xmax] [0, Ymax] 1

Trained tree

Figure 2: Example of generation of Match-action entries

XAI methods, we can retrain the models using only the important
features and discard those that did not contribute much to the
models’ outcomes. We can iterate through this loop several times to
fine-tune the process of blocks ① and ② until the model’s accuracy
is significantly improved. Furthermore, we provide users with the
option to select which features they want to use for training models
based on their domain-specific knowledge. The output of these two
blocks, ① and ②, is a highly accurate trained model that will be
ready for subsequent analysis in the following blocks.

3.2 Model Transformation
The block ③ in Figure 1 is implemented by a controller. The con-
troller inputs a ML model, transforms it into a set of MA entries,
then loads them into the switch. It can also receive ML inference
results from the switch. We currently focus on supporting Decision
Tree models.

The transformation is performed by visiting all possible paths
from the root to a leaf node of the tree. Each path is transformed
into a MA entry. The Match of an entry is a set of ranges of features’
values that satisfy the path. The Action of an entry is to return the
classification result.

Figure 2 demonstrates a simplified transformation of a DT with
two features 𝑓1 and 𝑓2. A DT is a binary tree, in which, each node
is a simple boolean expression that represents a relation between a
feature and a threshold. If the feature’s value is less than or equal
to the threshold, then the left branch is taken, otherwise it’s the
right branch. In the DT tree in the left side of Figure 2, we use
𝑥𝑖 ∈ [0, 𝑋𝑚𝑎𝑥] and 𝑦𝑖 ∈ [0, 𝑌𝑚𝑎𝑥] to denote the feature thresholds
𝑓1 and 𝑓2 respectively. These thresholds are literal numeric values.

The ML inference process, which predicts a set of feature values
𝑓1, 𝑓2 against this DT tree, is basically the verification of 𝑓1 and
𝑓2 against these boolean expressions from the root to a leaf node.
The leaf contains the prediction. For example, if we have (𝑓1 ≤
𝑥1) ∧ (𝑓2 ≤ 𝑦1) then the prediction is class 1.

We list all possible paths of the tree on the table on the top-
right of Figure 2. Because 𝑥𝑖 and 𝑦𝑖 are literal numeric values, we
can easily collapse the boolean expression of a path to ranges of
possible values of each feature. The bottom-right table of Figure 2
represents the result MA entries. Each entry is a row of the table. For
example, the first row represents an entry having the key (Match)

https://github.com/Montimage/mmt-probe

ARES 2024, July 30-August 2, 2024, Vienna, Austria Huu Nghia Nguyen, Manh-Dung Nguyen, Edgardo Montes de Oca

corresponding to range values 𝑓1, 𝑓2: [0, 𝑥1] and [0, 𝑦1], and value
(Action) that is class 1.

Previous approaches in [7, 19, 20] transform a DT tree as-is, i.e.,
without collapsing. [7, 19] follow the sequential top-down tree path
to map the each threshold to a MA entry. The thresholds (thus
its MA entries) are then grouped by feature into a separated table.
They then introduces another table to combine the mapping results
from the feature tables to the final result. This map is enhanced
in [20] to reduce number of entries in each MA table by breaking
the sequential dependency of each node in a path. However, these
approaches require 𝑛 + 1 tables for a DT tree of 𝑛 features, and
more tables implies more pipeline executions. By simply collapsing
the conjunction of a boolean expression of a path before mapping,
our transformation produces a single MA table for a DT input
within a minimum number of entries. Indeed, the number of entries
is less than or equal to the number of leaf nodes. Consequently,
this reduces the number of pipeline executions needed to match
features.

3.3 In-network ML Inference
The blocks ④, ⑤, ⑥ and ⑦ are implemented inside a P4-enable
switch. The blocks are described in the following.

Parser. When a packet arrives at the switch, it is parsed in block④.
This parser extracts the concerned protocol headers, such as, Ether-
net, IP, UDP, etc. The extracted values are kept as metadata in the
Paacket Header Vector (PHV). The values can then be subsequently
accessed by other blocks. For example, Ethernet and IP protocols
need to be parsed to be able to perform packet switching.

In-band features extraction & computation. The block ⑤ in Fig-
ure 1 extracts the necessary feature values required for ML infer-
ence. Several feature values can be obtained from the previous
parser block, such as, the length of an IP packet, the source port
number, etc. Although, there are feature values that still need to be
extracted or computed, for example, IAT feature that captures the
different arrival times of two consecutive packets, or the maximum
size of packets during a window time frame, etc. This extraction and
computation must take into account a number of strict constraints
imposed by a programmable switch, such as, low available memory,
limited support for mathematical operations and limited number
of operations per packet to maintain line rate packet processing.

ML inference. This block performs ML inference. It predicts the
set of extracted feature values. The prediction is done by matching
the values against the MA entries. If there exists an entry having a
key that matches the values then the prediction is the result value.
This result is saved as metadata so that it can be accessed by the
next block.

Deparser. This is the last block in the chain of processing the
packets inside the switch. This block, ⑦, packages a packet with
additional information, such as, MAC destination, new checksum,
etc, and then sends the packet to a selected outgoing port of the
switch. This block also notifies the controller on the result obtained
from the ML inference. Additional information is also sent to the
controller, such as, a 5-tuple identifying the packet (i.e., source and

Table 1: Overview of the dataset

Number of packets Label
Normal traffic 155888 0
Malicious traffic 10208 1
Total 166096

destination IP addresses and port numbers, and protocol identifica-
tion), as well as the feature values. The information is encoded in a
digest message (i.e., a message to communicate information from
the data plane to the control plane), then sent to the controller. Utili-
sation of digest communication, instead of transmission of a packet
to the controller via the CPU port, reduces the processing overhead
at the controller [3] as the message is structured. Digests are sent
to the controller by calling digest P4 function. The controller is
configured with P4Runtime [3] to listen to digest messages. Upon
receiving a message, the controller decodes it. The decoded informa-
tion can be used to perform some reaction, such as, to reconfigure
the switch, or even to retrain the model, etc. This utilisation is out
of scope of the paper, thus here, for instance, we simply save it into
a .csv file.

It is crucial to note that the blocks presented above are essential.
Depending on a specific use-case, other blocks can be introduced.
For example, a flow tracker block can be inserted after the parser
block to track the flows that have already been classified, or identi-
fied as malware. If so, any new incoming packets belonging to those
flows are not processed by the blocks ⑤ and ⑥, but are forwarded
as-is or dropped respectively.

The prediction result can also be immediately used by the switch,
for example, to decide to drop or forward the current packet. This
forms a local closed-loop of extraction-detection-reaction inside
the switch. Consequently, it avoids RTT delay caused by the com-
munication with the controller.

4 EXPERIMENTAL EVALUATION
In this section, we evaluate our framework by applying it to imple-
ment a smart IoT wireless gateway. The gateway implements an
in-network ML-based solution for quickly detecting and immedi-
ately mitigating IoT malicious traffic which is encrypted. The threat
model simply follows the block-list (or blacklist) model. This is to
block any packets which are classified as malicious.

4.1 Model Preparation
Several packet-level features [12] can be easily extracted from
packet header fields and utilized to address various traffic clas-
sification challenges. However, they may prove inadequate when
dealing with encrypted traffic, as certain features can be obfuscated
by encryption algorithms [6]. Therefore, for the sake of simplicity,
in this experimental evaluation we focus solely on statistical fea-
tures derived from packet sizes and timestamps. Specifically, we
consider three key features: IAT, representing the inter-arrival time
between packets; len, indicating the payload size of each IP packet;
and diffLen, which captures the variability in packet sizes over time.

Table 1 presents a summary of the public dataset CSE-CIC-
IDS2018 [16], which is used for botnet detection in encrypted traffic
within IoT networks. The dataset contains a total of 166096 packets

A Framework for In-network Inference using P4 ARES 2024, July 30-August 2, 2024, Vienna, Austria

Predicted Normal Predicted Malicious
Predicted Label

Ac
tu

al
 N

or
m

al
Ac

tu
al

 M
al

ici
ou

sTr
ue

 L
ab

el

46527 242

3056 4

Confusion Matrix

Figure 3: Confusion matrix

0.00 0.02 0.04 0.06 0.08 0.10
mean(|SHAP value|) (average impact on model output magnitude)

len

diffLen

iat

Normal traffic
Malicious traffic

Figure 4: SHAP summary plot for anomaly detection

extracted from .pcap files, with 155,888 packets classified as normal
traffic and 10208 packets classified asmalicious traffic. In the dataset,
normal and malicious traffic are labeled as 0 and 1, respectively.
We use MAIP to extract the 3 features from this dataset. We then
randomly spit the obtained values into training and testing datasets.
The training dataset consisting of 70% of the data is used to train
our DT model. The rest is used to test the accuracy of obtained
model.

Figure 4 shows the confusion matrix that provides a detailed
breakdown of the accuracy of the obtained DT model. For instance,
the top-left cell represents instances where the model correctly
classified normal traffic (label 0) as normal, with a count of 46527.
The accuracy metric, calculated as the ratio of correctly predicted
instances to the total number of instances, is 93.38%. Despite their
simple logical structure and lower precision compared to advanced
ML techniques such as deep neural networks [12], the DT model
still achieves high accuracy and, more importantly, facilitates the
complex operations involved in networking devices.

SHAP provides explanations of a model’s predictions by identi-
fying the most important features based on a feature attribution
framework and Shapley values. Figure 4 illustrates important fea-
tures by sorting the sum of magnitudes of Shapley values over these
samples. Here, the length of the bar indicates how much influence
the feature has on the prediction. Among the three features used,
the most important one is IAT. It is also a common characteristic
used in machine learning algorithms [5, 17], as malicious commu-
nications often exhibit specific flow duration patterns. For instance,
some botnets establish brief connections, while others are more
chatty, resulting in longer duration. Please note that the efficacy of
this detection method may diminish due to attacker evasion tactics,
though this aspect falls beyond the scope of this paper.

P4 switch

Raspberry Pi

Data traffic

Controller

WIFI
APw

la
n0RJ45 et

h0

Control traffic

server

clients

Figure 5: Overview of the IoT testbed

4.2 In-network ML Inference
The framework prototype is implemented mainly in P4 and Python
to provide the data plane and control plane functionality (see Fig-
ure 1). We execute the P4 code in a P4 software switch which im-
plements the behavioral model version 2 architecture, BMv25. The
DT model, that is prepared in the previous section, is transformed
into 5022 MA entries of a table that will be loaded into the BMv2
P4 switch. With the same model, IISY [19] generates totally 10047
MA entries in 4 MA tables. Three tables for IAT, len and diffLen
features contain 4731, 42 and 251MA entries respectively. The last
table contains 5023 MA entries for synthesising final results from
the 3 tables above.

Correctness of P4-based Inference. We first want to evaluate the
correctness of the ML inference running inside the P4 switch. We
usemininet6 to create a realistic virtual network running on a single
virtual machine Ubuntu 20.04.6. The network consists of two nodes:
a host h and a BMv2 P4 switch s. The captured packets in dataset
traces are replayed from h to s using tcpreplay7. For each incoming
packet, the P4 switch performs a prediction, e.g., steps ④, ⑤, ⑥ and
⑦ in Figure 1, and sends the prediction result together with feature
values to the controller which saves this information into a .csv
file. We later use sklearn to obtain the score which represents the
mean accuracy of data in the .csv file. Since we obtained the score
1, we can conclude that the P4-based inference and sklearn-based
inference give the same result.

Overhead on Packet Latency. In this section, we evaluate the over-
head caused by the in-network ML inference over packet latency in
a physical testbed. We deployed the implementation prototype of
the in-network ML inference in Raspberry PI 3 Model B, with 1GB
of RAM and Quad Core 1.2GHz, which acts as a smart IoT wireless
gateway, as shown in Figure 5. We rely on P4PI [9] to run the P4
code on a BMv2 P4 switch in the Raspberry Pi. The controller is
deployed on a separated machine. The controller and other IoT de-
vices connect to the gateway via its wireless network interface. The
IoT devices can connect to each other and to a server represented
on the left side of the figure.

In order to assess the latency overhead, we developed a pair of
basic client and server applications to actively gauge the end-to-
end packet latency. The client includes its current time in a packet
payload and transmits it to the server, which promptly returns the
packet. The client subsequently contrasts the current time with
the one encapsulated in the packet to determine the RTT of the
5https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
6https://mininet.org/
7https://tcpreplay.appneta.com/

https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://mininet.org/
https://tcpreplay.appneta.com/

ARES 2024, July 30-August 2, 2024, Vienna, Austria Huu Nghia Nguyen, Manh-Dung Nguyen, Edgardo Montes de Oca

10000 15000 20000 25000 30000 35000 40000 45000 50000
RTT (s)

0

20

40

60

80

100
Di

st
rib

ut
io

n
(%

)

without ML inference
with ML inference

Figure 6: Overhead of ML inference on packet latency

packet, all of this is achieved without requiring time synchroniza-
tion between the client and the server. In the case of measurements
without ML inference, we removed the related P4 code of ML in
the P4 switch.

We conducted several measurements. Each measurement sends
10000 packets. We present the results in the Cumulative Distri-
bution Function (CDF) diagram in Figure 6. The horizontal axis
stands for the measured RTT values and the vertical axis for their
distribution. We can see that almost all RTT values vary from 15000
to 30000 𝜇𝑠 . The average latency with and without ML inference
are 22093 𝜇𝑠 and 19069 𝜇𝑠 respectively. Therefore, the additional
latency increases by 15.8%. This additional latency is mainly due to
the table lookup time of the P4 switch that is executed inside the
Raspberry Pi.

Swift Detection and Reaction at the IoT Gateway. We involved the
testbed in Figure 5 by introducing a new block in the P4 program
to drop a packet if it is classified as malicious. We then use a laptop,
that connects to the gateway via its wireless interface, to act as a
malicious IoT device, as shown in the right side of Figure 5. In this
laptop, we use tcpreplay to inject botnet traffic into the network.
We see that the gateway can detect almost all the malicious packets
and immediately drop them. Although, there exist packets that are
not classified as malicious because the accuracy of the model is
93.38%.

5 CONCLUSION
We presented in this paper a comprehensive framework to swiftly
detect and mitigate malicious traffic by directly performing ML
inference at the data planes via P4-enabled switches. We imple-
mented the framework and experimentally evaluated it against
a P4 software switch. This is a step forward to applying ML to
security analysis of network traffic at line rate. Future work will
explore improving the accuracy of the model and applying it for
encrypted network traffic classification and anomaly detection in
deterministic networks.

ACKNOWLEDGMENTS
This work is partially supported by the European Union’s Horizon
Europe research and innovation program under grant agreements
Numbers 101096504 (DETERMINISTIC6G), 101070450 (AI4CYBER)
and the INFLUENCE project. Views and opinions expressed are

however those of the author(s) only and do not necessarily reflect
those of the European Union. Neither the European Union nor the
granting authority can be held responsible for them.

REFERENCES
[1] Aristide Tanyi-jong Akem, Guillaume Fraysse, and Marco Fiore. 2024. Encrypted

Traffic Classification at Line Rate in Programmable Switches with Machine
Learning. In Proc. of NOMS.

[2] Alejandro Barredo Arrieta et al. 2020. Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI. In-
formation fusion (2020).

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
Computer Communication Review 44, 3 (2014), 87–95.

[4] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hardware for SDN. In Proc. of
SIGCOMM.

[5] Livadas Carl, R Walsh, D Lapsley, and WT Strayer. 2006. Using machine learning
technliques to identify botnet traffic. In Local Computer Networks, Proceedings
2006 31st IEEE Conference on. IEEE.

[6] Hossein Doroud, Ahmad Alaswad, and Falko Dressler. 2022. Encrypted Traffic
Detection: Beyond the Port Number Era. In 2022 IEEE 47th Conference on Local
Computer Networks (LCN). 198–204.

[7] Jong hyouk Lee and Kamal Sigh. 2020. SwitchTree: In-network Computing and
Traffic Analyses with Random Forests. Neural Computing and Applications (2020).

[8] Fabian Ihle, Steffen Lindner, and Michael Menth. 2023. P4-PSFP: P4-Based Per-
Stream Filtering and Policing for Time-Sensitive Networking. (2023).

[9] Sándor Laki, Radostin Stoyanov, Dávid Kis, Robert Soulé, Péter Vörös, and Noa
Zilberman. 2021. P4Pi: P4 on Raspberry Pi for networking education. SIGCOMM
Comput. Commun. Rev. 51, 3 (jul 2021), 17–21.

[10] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. Advances in neural information processing systems 30 (2017).

[11] Huu Nghia Nguyen, BertrandMathieu, Marius Letourneau, and Guillaume Doyen.
2023. A Comprehensive P4-based Monitoring Framework for L4S leveraging
In-band Network Telemetry. In Proc. of NOMS.

[12] Manh-Dung Nguyen, Anis Bouaziz, Valeria Valdes, Ana Rosa Cavalli, Wissam
Mallouli, and Edgardo Montes De Oca. 2023. A deep learning anomaly detec-
tion framework with explainability and robustness. In Proceedings of the 18th
International Conference on Availability, Reliability and Security (ARES ’23).

[13] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and P. Castoldi.
2019. P4 edge node enabling stateful traffic engineering and cyber security.
Journal of Optical Communications and Networking 11, 1 (2019), A94–A95.

[14] Ricardo Parizotto and Israat Haque. 2024. Offloading Machine Learning to
Programmable Data Planes: A Systematic Survey. January 2024 (2024).

[15] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should
I trust you?" Explaining the predictions of any classifier. In Proc. of SIGKDD.
1135–1144.

[16] Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghorbani, et al. 2018. Toward
generating a new intrusion detection dataset and intrusion traffic characterization.
Proc. of ICISSP 1, 108–116.

[17] W Timothy Strayer, David E Lapsley, Robert Walsh, and Carl Livadas. 2008.
Botnet detection based on network behavior. Botnet detection 36, August (2008),
1–24.

[18] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual
explanations without opening the black box: Automated decisions and the GDPR.
Harv. JL & Tech. 31 (2017), 841.

[19] Z Xiong and N Zilberman. 2019. Do Switches Dream of Machine Learning?
Toward In-Network Classification. Proc. of HotNets, 25–33.

[20] Mingyuan Zang, Changgang Zheng, Lars Dittmann, and Noa Zilberman. 2023. To-
wards Continuous Threat Defense: In-Network Traffic Analysis for IoT Gateways.
IEEE Internet of Things Journal 11, 6 (2023), 9244–9257.

[21] Changgang Zheng, Damu Ding, Shay Vargaftik, and Yaniv Ben-itzhak. 2023.
In-Network Machine Learning Using Programmable Network Devices : A Survey.
EEE Communications Surveys & Tutorials (2023), 1–35.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Explainable AI
	2.2 Offloading ML Inference to Programmable Data Planes

	3 System Design
	3.1 Offline Model Preparation
	3.2 Model Transformation
	3.3 In-network ML Inference

	4 Experimental Evaluation
	4.1 Model Preparation
	4.2 In-network ML Inference

	5 Conclusion
	Acknowledgments
	References

