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Abstract—The increasing demand for latency-sensitive applica-
tions has necessitated the development of sophisticated algorithms
that efficiently manage packets with end-to-end delay targets
traversing the networked infrastructure. Network components
must consider minimizing the packets’ end-to-end delay vio-
lation probabilities (DVP) as a guiding principle throughout
the transmission path to ensure timely deliveries. Active queue
management (AQM) schemes are commonly used to mitigate
congestion by dropping packets and controlling queuing delay.
Today’s established AQM schemes are threshold-driven, identi-
fying congestion and trigger packet dropping using a predefined
criteria which is unaware of packets’ DVPs. In this work, we
propose a novel framework, Delta, that combines end-to-end
delay characterization with AQM for minimizing DVP. In a
queuing theoretic environment, we show that such a policy
is feasible by utilizing a data-driven approach to predict the
queued packets’ DVPs. That enables Delta AQM to effectively
handle links with arbitrary stationary service time processes.
The implementation is described in detail, and its performance
is evaluated and compared with state of the art AQM algorithms.
Our results show the Delta outperforms current AQM schemes
substantially, in particular in scenarios where high reliability, i.e.
high quantiles of the tail latency distribution, are of interest.

Index Terms—active queue management, congestion control,
delay violation probability, latency-sensitive applications

I. INTRODUCTION

Cyber-physical systems (CPS) integrate computing and
communication elements and physical processes, enabling
intelligent control and monitoring of physical entities [1].
With the rise of CPS, human-in-the-loop (HITL) applications
have emerged where humans interact with CPS to provide
decision-making, supervision, and intervention capabilities.
These applications range from augmented reality systems to
autonomous vehicles and industrial automation.

Real-time applications, such as CPS and HITL, have strin-
gent delay requirements, often expressed in terms of a target
delay that should not be exceeded more than with a certain
probability. This probability, known as the delay violation
probability (DVP), represents the likelihood that a packet will
not reach its destination before the specified deadline [2].
For example, HITL applications typically have a delay target
around 100 ms with a DVP of 0.99 to 0.999 [3], [4].

Existing approaches to meeting such stringent latency re-
quirements fall into two main groups. On the one hand,
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there is a large body of work on the characterization of the
end-to-end latency distribution in computer networks, with
queuing theory as a fundamental tool. Deterministic network
calculus approaches aim to analyze the worst-case network
latency by considering specific service and arrival processes.
Subsequently, stochastic network calculus emerged, focusing
on deriving stochastic bounds on network latency. However,
these approaches encounter limitations as they rely on assump-
tions regarding the service process and apply only to service
processes that are independent and identically distributed
(i.i.d.) [5]–[7]. These limitations constrain their applicability
in practical scenarios for DVP optimization.

The apparent limitations of analytical approaches have mo-
tivated recent interest in data-driven end-to-end latency distri-
bution prediction schemes [8], [9] and a renewed interest for
active queue management (AQM) [10]. AQM drops packets
from buffers before they would overflow, to prevent excessive
end-to-end delays due to long queues. Existing AQM schemes
are threshold-driven, using predefined criteria to identify con-
gestion and trigger packet dropping, and hence they cannot
incorporate application-layer end-to-end delay requirements
in their dropping decision. Thus, the AQM dropping criteria
do not change in response to changing latency requirements,
instead tedious parameter tuning is needed. Clearly, for making
the large scale deployment of latency sensitive applications,
there is a need for a methodological approach for achieving a
target DVP in an automated manner.

In this work, we propose a framework that combines end-
to-end delay characterization with AQM for minimizing DVP.
The proposed framework makes it possible to incorporate tran-
sient DVP predictions in the AQM packet dropping decisions.
Or main contributions are as follows.

• We propose of a novel AQM framework, Delta, which ef-
fectively minimizes end-to-end delay violations by incor-
porating DVP predictions in packet dropping decisions.

• We make use of a data-driven approach for DVP predic-
tion, enabling Delta AQM to effectively handle links with
arbitrary stationary service time processes.

• We evaluate Delta AQM in a representative queueing
environment and show that it outperforms state of the
art AQM schemes.

A. Related Work

Active queue management works such as [11], [12] aim
to solve the bufferbloat problem, i.e., queues in the network978-1-979-8-3503-1090-0/23/$31.00 © 2023 European Union



Fig. 1: Queueing model with AQM

causing high latency and delay jitter. Their proposed schemes
PIE and CoDel aim to address this problem by limiting
the average queueing latency to a reference value; and by
using the minimum rather than average as the queue measure,
simplified single-state variable tracking of minimum, and by
using queue-sojourn time. There have been some recent works
such as [13], which utilize a deep reinforcement learning
based architectures for queue management. The authors show
performance gains over other deep-Q-networks (DQN) based
works. This work utilizes a scaling factor in their reward
function in order to arrive at the trade-off between queueing
delay and the throughput. Since different applications would
need different scaling factors, this approach does not gener-
alize well and is heavily dependent on fine-tuning the reward
functions. Another line of research involves works which aim
to minimize the end-to-end latency in queues. Liu et al. in
[14] propose a method towards end-to-end congestion control
and queue management, which aims to reduce the jitters and
make the end-to-end latency deterministic. Building on top
of this, authors in [15] formulate a Semi-Markov Decision
Process (SMDP) to obtain an optimal packet dropping policy.
They realize this by assuming a probabilistic model for the
flow rates and the de-queueing pattern. Their work focuses on
characterizing the load, emanating out of their model of choice
where packet data arrivals are given by gamma distributed
inter-arrival times. Additionally, they assume the service times
to be exponentially distributed which may not generalize well.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this study, we assume a single first-in, first-out (FIFO)
queue with a deterministic arrival process. We consider such
a simple model for exposing the problem and the proposed
solution. We discuss the extension of the proposed solution
to multiple queues in Section V. Packets are generated at the
start node and queued until the server becomes available and
can process the corresponding packet. Let M = {1, ...,m}
denote a set of consecutive time sensitive packets traversing
the link. We denote by Ti the arrival time and by τi the target
delay of packet i ∈ M . We denote by Wi the queueing time
of packet i, by Si its service time, and by Yi = Wi + Si the
resulting sojourn time. The server can decide to mark a queued
packet to be dropped prior to service, denoted by Xi = 0, in
which case the packet has service time Si = ∞ as shown in
Figure 1. A packet not marked for dropping, i.e., Xi = 1,

will enter the server and will experience service time Si ∼
fS(s | X = 1) with a general stationary process. The selection
of a general distribution for the service delay process stems
from our objective to replicate the stochastic delay observed
in network links, particularly prevalent in wireless networks.
Therefore, the probability density function of the service time
is denoted by fS(s | X) where the variable X ∈ {0, 1} models
the capability of the server refusing to process the packet, i.e.
to drop the packet. By default, all packets are assigned Xi = 1
on their arrival.

Problem Statement: Our optimization objective is the frac-
tion of successfully processed packets after the m-th packet
has been processed. It is denoted by

RM =

∑m
i=1 I [Yi ≤ τi]

m
, (1)

where I [·] is the indicator function equalling 1 if the argument
is true and 0 otherwise. Formally, an AQM scheme provides a
mapping from the currently backlogged packets to a dropping
decision vector, denoted by π : Dn → Xn. The goal is
to find the AQM policy π∗ that maximizes the fraction of
successful packets RM by deciding about dropping some of
the packets of the stream, denoted by the dropping variable
X := {Xi}mi=1.

III. APPROACH

To solve this problem, we strive to find the dropping vector
that maximizes the expected outcome limited to the n packets
in the queue (N ⊂M) denoted by

x∗ = argmax
x∈Xn

(E [RN |X = x]) , (2)

where X represents the dropping vector. Packet drops can be
applied frequently to increase the effect, particularly if the state
of the queue changes rapidly. In order to describe the queue
state at dropping time t, we use the notion of the remaining
delay budget of each packet denoted by

δi,t = max(τi − (t− Ti), 0). (3)

Hence, we denote the queue state at time t by vector
∆t := {δi,t}ni=1. Remaining delay budget is considered a
decisive attribute of the packets during the decision rounds.
For instance, if the remaining delay budget of a packet is very
small, the AQM algorithm can decide not to serve it, so the
successors of the packet face less waiting time.

Our proposed AQM scheme Delta essentially chooses at
every decision round the dropping vector that maximizes the
expectation of successfully transmitted packets from the queue
state vector. We solve Equation 2 by finding the optimization
function as

E [RN |X = x] =

∑n
i=1 E [I [Yi ≤ τi] |X = x]

n
. (4)

The right-hand side expectation term in Equation 4 essentially
describes the probability of packet i finishing before its
deadline τi, given the dropping vector is applied. We call this
expectation the packet’s success probability ψi,x and it can



Fig. 2: The decision tree of dropping packets in a queue of
length 2 where 0 means drop and 1 means pass.

Fig. 3: An example on calculating the objective function for
the dropping vectors x1 and x2 which consider if packets in
the queue should be dropped.

be obtained by calculating the complementary of the packet’s
DVP denoted by φi,x.

ψi,x = 1− φi,x = 1− E [I [Yi > τi] |X = x] . (5)

The problem is narrowed down to finding the DVP for each
packet in the queue. Assuming such estimation is feasible,
a decision tree is formed to represent the set of all possible
dropping vectors and their outcomes. As shown in Figure 2,
the decision tree is solved by traversing the tree from the root
to the leaf nodes, evaluating the objective function mentioned
in Equation 4 associated with each path through the tree. The
optimal solution is the path through the tree that results in the
highest Ψxj =

∑n
i=1 ψi,xj . In a more detailed example shown

in Figure 3, the dropping vectors x1 and x2 are compared
to decide if the first packet should be dropped or not. The
calculated objective function in b is higher, so it is favored.

To estimate the packets’ DVPs, we resort to the approach
described in our previous work [9]. At its core, we estimate
the probability density function (PDF) of the remaining latency
fZ for any packet, from the number of its predecessors
in the queue X . For the ith packet in the queue at time
t, DVP is obtained by calculating the remaining latency’s
complementary cumulative density function (CCDF) at the
remaining delay budget δt,i denoted by

φi,x = fZ(z > δt,i | X). (6)

Considering the dropping vector x chosen by Delta AQM,
we must incorporate the number of effective predecessors, or
the predecessors that are not going to be dropped by X =∑i

j=1 xj .
We utilize a machine learning approach, namely mixture

density networks, for latency density estimation for any
queued packet at any time in a queuing system. In mixture
density networks, the parameters of a parametric density

function e.g. a Gaussian mixture model, are controlled by a
fully connected neural network. Therefore, we approximate
φi,x by the parametric density function p̂θ as

φi,x ≈ p̂θ(z > δi,t | X =
∑i

j=1 xj). (7)

To train the neural network, a dataset must be formed by
recording the number of predecessors when a packet enters
the queue and the end-to-end latency.

The description of our AQM policy Delta with the con-
ditional density function is described in Algorithm 1. The

Algorithm 1 Delta

1: function µ(∆t)
2: Ψmax,x̂ ← 0
3: for x ∈ Xn do
4: Ψx ← 0
5: for i ∈ N do
6: ψi,x ← p̂θ(z ≤ δi,t | X =

∑i
j=1 xj)

7: Ψx ← Ψx + ψi,x

8: end for
9: if Ψx > Ψmax then

10: Ψmax ← Ψx

11: x̂← x
12: end if
13: end for
14: return x̂
15: end function

time complexity of Delta is O(2N ), which is relatively high
and could pose a challenge in practical applications. This
complexity indicates that the algorithm’s computational re-
quirements increase exponentially with the number of inputs,
making it necessary to use a limit on the queue length. Parallel
processing techniques can be utilized to reduce the algorithm’s
run time. These findings suggest room for further investigation
into improving the algorithm’s efficiency in future research.

IV. EVALUATION

This section comprehensively analyzes the proposed Delta
AQM scheme in a simulated queuing system as shown in
Figure 1 1. Firstly, we present a comparative assessment be-
tween Delta AQM and two established and advanced schemes:
CoDel, widely implemented in network infrastructures [12],
and DeepQ [13], a state-of-the-art method based on Deep
Reinforcement Learning. Furthermore, we investigate Delta
AQM’s sensitivities to different factors in-depth. We assess its
efficacy in diverse scenarios, such as situations with various
delay targets and utilization factors. The utilization factor is
determined by dividing the packet arrival rate by the average
service rate. Additionally, we analyze the performance of Delta
AQM in scenarios where there is a mismatch between the
DVP predictor’s learned behavior about the link and the actual
network conditions, providing insights into its adaptability.

1The reproducible results could be found at:
https://github.com/samiemostafavi/delta-queue-management



In simulations, we model the queue’s service delay process
by a Gamma distribution where, by default, the concentration
is set to 5 and the rate to 0.5 resulting in 0.1 as the average
service rate. The tasks arrival process is assumed to be
deterministic to represent sensory data traversing the network
link. Tasks arrive at the queue carrying a target delay which
is assumed to be constant for all tasks in each simulation. We
analyze the performance over a range of target delay values.
This range is defined to cover the delay target values that
are close or far compared to the average end-to-end delay
in the no-aqm simulation. For instance, in all figures, the
0.8 target delay corresponds to the 0.8 quantile of the end-
to-end delay of the no-aqm simulation. In all benchmarks
we compared the AQM schemes by the failed tasks ratio
introduced in Equation 1. We set the number of completed
tasks m in the simulations to at least 107 which is large
enough to mitigate the performance variance even for large
target delays. In order to prevent excessively long processing
times during simulations, we constrained the AQM to focus
on the initial 15 packets within the queue.

We include the no-AQM system performance and offline-
optimum policy performance in the comparisons. The offline-
optimum policy already knows the end-to-end delay of the
tasks in the queue. At every decision round, it drops the head
packet if its end-to-end delay exceeds the delay target. Thus,
every packet being served will make the deadline. Due to
access to the delay information, the offline-optimum AQM
scheme’s performance is expected to be superior to all others.

The evaluation starts by comparing our proposed approach
with CoDel [12], DeepQ [13], the offline-optimum and the
case with no-AQM. CoDel, as mentioned earlier, operates
based on predefined criteria and thresholds to detect con-
gestion and initiate packet dropping, which are determined
by interval time and target delay. In our evaluation, we
compare the performance of the AQM schemes across four
different target delay values, varying from those close to the
average no-AQM delay quantiles to those significantly further.
Notably, for each target delay, it was essential to readjust
the CoDel parameters; otherwise, the scheme’s performance
exhibited a notable degradation. The same requirement applied
to DeepQ, necessitating a retraining phase to adapt its policy
parameters for each target delay. In contrast, our proposed
Delta scheme demonstrates an advantageous characteristic, as
it does not require any parameter tuning or retraining when
the packet’s delay targets change. The same Delta model
remained applicable and effective across all four target delays
without modifications. We demonstrate this in Figure 4a and
4b where we increase the utilization factor moving from Figure
4a to Figure 4b. As can be observed from the figures, our
proposed approach consistently performs better than the other
approaches, barring the offline-optimum. On moving from
Figure 4a to Figure 4b we can observe an improvement in
performance for the algorithms (except no-AQM) in terms of
fewer task failures.

We extend the analysis of utilization factors by comparing
91.6% and 96.7% from Figure 4a with 80.7% and 60%

(a) Utilization factor: 91.6%

(b) Utilization factor: 96.7%

Fig. 4: Comparing different AQM schemes

additionally in Figure 5. ”Delta 60” in Figure 5 corresponds
to a utilization factor of 60% and similarly ”Delta 80” cor-
responds to a utilization factor of 80.7% and finally ”Delta
91.6” in Figure 5 corresponds to a utilization factor of 91.6%.
The nomenclature for the offline optimum schemes follows
a similar trend, being abbreviated as ”oo”. Here we can
observe that as the utilization factor drops appreciably to 60%,
Delta’s performance is almost similar to that of no-AQM.
As the utilization factor increases to 80.7%, the performance
improves and finally at 91.6%, the performance is significantly
better than that of no-AQM. The offline optimum approach too
follows a similar trend as Delta, approaching no-AQM closely
for a utilization of 60% and then gradually improving as the
utilization factor increases. All these findings can be attributed
to how, for sparsely populated queues, there are more drops in
terms of the total number of packets in the queue at any time. It
is also worth noting that the target delay corresponding to the



Fig. 5: Effect of sparsely populated queues

Fig. 6: Analysis of higher quantiles of target delay, utilization
factor: 91.6%

0.8th quantile with the utilization factor of 80.7% is different
from the one with utilization factor of 91.6%.

Figure 6 extends our analysis for the implementation with
the utililzation factor of 91.6% to higher quantiles of target
delays. In this plot, we can additionally observe and compare
no-AQM, our proposed approach Delta and the offline opti-
mum for the 0.9999th and 0.99999th quantile of target delays.
It is interesting to note here that across the various quantiles of
target delays being analyzed, the offline optimum performs at
least 10 times better than the no-AQM scheme in terms of task
failure ratios. Moreover, our proposed solution approaches the
offline-optimum closely.

Next, we analyze the performance when the DVP predictor
is trained over a varying number of samples in Figure 7.

Fig. 7: The effect of using a poorly trained DVP predictor on
the performance of the Delta AQM, utilization factor: 90.6%

The label ”delta 512” denotes the case where our proposed
algorithm is just trained over 512 samples. This is however
repeated over multiple iterations and the average of the runs
is shown, along with the minimum and maximum range of the
values obtained (by the blue marker). Here we can observe that
while the average of the different runs has a better performance
(in terms of task failures) than the case with no AQM, in some
runs, the performance equals that of ”No AQM”. The training
with just 512 samples can thus be concluded as inadequate.
On the other hand, when trained over 4096 samples, the
performance is consistently better than the case with no AQM
and also the case with ”delta 512”, showing that increasing
the number of training samples has a positive impact.

Finally, we evaluate our approach over cases where our
predictor is exposed to differing Gamma service processes
against a different service process it was trained over. Figure 8
shows how different algorithms (and our proposed algorithm,
tested in varying conditions) perform against each other with
respect to the failed task ratios, observed across specific target
delays. While our proposed algorithm has undergone the same
training process here, it has been tested across different service
processes which correspondingly have different means and
variances. The dots in the bars represent the delayed packet
ratio out of the total tasks. The transparent region (non-dotted)
represents the dropped packet ratio.

We can observe that the least number of failed tasks
correspond to the case where the predictor is tested against
a service process which follows the same delay distribution as
the training process. The Gamma rate of the service process
is then varied, while also proportionately changing the packet
arrival rate, so as to maintain the same utilization factor in
the benchmark. We compare our proposed approach against
a case where no-AQM is performed and a case where the
queue manager has all the information about incoming packets



Fig. 8: The effect of testing against varying Gamma rates on
the performance of the Delta AQM, utilization factor: 90.6%

apriori which we label as the offline-optimum. For the case
where our proposed approach is trained and tested over the
same service process (denoted by Mean = 10*), we can
observe that the performance is consistently better than no-
AQM. This also holds true when we change the mean of the
service process by +-2 while testing (denoted by Mean = 8
and 12). Interestingly, when we test Delta over a significantly
different service process (Mean= 3.33) than what we trained
over, it performs worse than no-AQM case. As we move higher
from our 10* delta scheme, towards a higher mean of the
service process, we observe a significantly higher proportion
of delayed tasks owing to the higher service mean, as most
tasks can be accommodated in principle, but at the cost of
them exceeding their delay bounds. As we move lower from
our 10* delta AQM scheme, towards a lower service mean, we
observe that delayed packets are significantly lesser than the
dropped packets. This is due to the fact that when the service
process has a lower mean, there are more failed tasks, most of
which cannot be accommodated without them being dropped.
The general observation however remains that on testing across
varying Gamma rates, there are more task failures.

V. CONCLUSIONS

This paper presented Delta, a novel AQM scheme that effec-
tively minimizes end-to-end delay violations by incorporating
DVP predictions in dropping decisions. By utilizing a data-
driven DVP predictor, Delta AQM offers a promising solu-
tion for links with general stationery service time processes.
Numerical evaluations in a queuing theoretic environment
demonstrate that Delta performs consistently well across a
wide range of delay targets without the need for modifica-
tions. Comparative assessments highlight the advantages of
Delta’s parameter-free approach compared to other schemes
that require parameter adjustments or retraining for each target

delay. Additionally, we conducted a thorough analysis of
Delta AQM’s sensitivity to the number of training samples,
as well as its performance under mismatched scenarios where
the characteristics of the link service process differ from
the trained model. These investigations shed light on the
sensitivities of Delta AQM, driven by the underlying machine
learning algorithm.

In future work, an important direction of investigation
will focus on assessing the efficacy and advantages of Delta
AQM in multi-hop queues. In the multi-hop scenario, the
utilization of the data-driven DVP predictor holds the potential
to construct a more comprehensive probabilistic model of
latency, enabling enhanced decision-making capabilities. This
investigation will provide valuable insights into the applicabil-
ity and benefits of Delta AQM in complex multi-hop network
environments.
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