6G Programmable Deterministic Webinar Series

Wireless-aware TSN Configuration and Management

Dave Cavalcanti, PhD

Principal Engineer

October 22, 2024

High demand for strict time & timeliness across many markets

2

Time-Sensitive Networking

Enhancements to *standard networking* enabling *deterministic performance on convergence of networks* supporting *mixed criticality* workloads

Based on IEEE 802.1 TSN Specifications

3

Flexibility, Re-configurability, Mobility, Lower maintenance costs, ...

Wireless has obvious benefits for many time-critical applications

Leading Wireless TSN Use-Cases and KPIs

Robotics & Automation

Extended Reality (XR)

	Mobile Robots	Closed loop Control	AR/VR		
Typical area of service	Small/medium/large	Small/medium/large	Small/Medium		
End stations per area of service	100	50	<5 devices/group		
Traffic Profile	Cyclic and Event	Cyclic and Isochronous	Cyclic (UL), video (DL)		
Time Synchronization Accuracy	~1 µsec	1 μsec or better	~1 µsec		
Bounded Latency	10 – 1msec (cyclic) 100 – 10 msec (events)	10 – 1 ms (cyclic) 10 – 100 ms (events)	3 to 10 msec		
Reliability	99.9 to 99.99%	99.9 to 99.9999%	99.9 to 99.99%		
Security	Authentication, integrity and resilience to DOS/Interference	Auth., integrity and resilience to DOS and time/QoS attacks	Auth., integrity and resilience to DOS.		

Source: Avnu Alliance White Paper "Wireless TSN: Market Expectations, Capabilities and Certification", https://avnu.org/wirelessTSN/

New Wireless Capabilities

Higher speed, lower latency, higher reliability

2.4, 5, 6 GHz band operation (unlicensed)

OFDMA, UL and DL MU-MIMO, 1024-QAM

MLO (Multi-link Operation) – Wi-Fi 7

Based on 3GPP Rel 16

mmwave and <7 GHz* (licensed and unlicensed)

5G New Radio, **OFDMA** flexible frame structure, 256 QAM (DL)

Ultra-Reliable Low Latency (URLLC)

Wireless TSN enabled by Wi-Fi and 5G

- TSN capable 802.11 AP and Clients
- AP operates as a bridge between wired and wireless TSN

TSN Translators (TT): new 3GPP logical entities to enable TSN across a 5G System

 5G elements do not implement IEEE 802.1 standards, but 5G leverages URLLC* capabilities to meet TSN QoS requirements

TSN integration via gateways

Challenges for wireless TSN

Core Elements of TSN

TIME SYNCHRONIZATION

Time Synchronization

A distributed, precise sense of time between different computing systems (e.g., sensors, actuators, and controllers, etc.)

TRAFFIC SCHEDULING

Traffic Shaping

Based on precise timing, network infrastructure handles traffic (e.g., automation, control) in a timely manner

SYSTEM CONFIGURATION

Central Automated System Configuration

Distribute and configure devices as well as applications using SDN approaches

Enhancements for Scheduled Traffic (802.1Qbv)

- Multiple queues are controlled based on a **repeating schedule** (time, gate open/closed).
- Time reference is provided by 802.1AS

Assumptions: Cycle time, Max data burst and link speed are known by the scheduler

Wired vs. Wireless TSN

* Packets lost or that miss the deadline

Ethernet (802.3 MAC/PHY) provides **stable links** with predictable capacity

Wireless requires special considerations

- Stochastic in nature (variable capacity)
- Time/frequency/space varying (shadowing, multipath, ...)
- Harsh environment (obstructions, noise, interference)
- Typically, high error rate compared to wires
- Shared medium access can cause variable latency
- Mobility and Roaming overheads

Source: D. Cavalcanti, et al., "Extending Accurate Time Distribution and Timeliness Capabilities over the Air to Enable Future Wireless Industrial Automation Systems," Proceeding of the IEEE, Vol. 107, No. 6, June 2019.

Challenges of dynamic Wireless links speed

Wired TSN

Wired + Wireless TSN

- Link speeds/bridge capabilities are static
- Schedule only changes when due to new flows/topology updates

----+ Wireless – Variable Ling Speed (e.g., function of power, noise, bandwidth, coding ...)

• Link speeds and (wireless) bridge capabilities are **dynamic**

Variable and typically slower wireless speed can lead to longer endto-end latencies or violations of KPIs

802.1Qbv Scheduling across wired and wireless TSN

Wireless-Aware 802.1Qbv Scheduling

Adapted from: Seewald et al, 802.1 TSN contribution

Typical TSN Configuration & Management Models

How to deal with wireless dynamics in 802.1Qbv scheduling?

- Do nothing (assume worst case always) efficiency/capacity tradeoffs
- Enable E2E TSN configuration tools to be aware of the variability of (wireless) bridges/links

See proposals in IEEE 802.1 TSN Contribution: Configuration Enhancements for Wireless TSN - Maik G. Seewald, Malcolm Smith - Cisco - Dave Cavalcanti, Juan Fang, Javier Perez-Ramirez – Intel IEEE 802.1 Plenary Session, July 2021 https://www.ieee802.org/1/files/public/docs2021/dj-seewald-wireless-tsn-0721-v01.pdf

Wireless-aware TSN Configuration & Management

LinkDelayVariability Descriptor

B0	B7	B8	B15	B16	B23	B24	B31	B32	B39	B40	B47	B48	B B53	}	B54	B63
Upda	ateInterval	Dela	y0	Pe	erc.0	C	Delay1		Perc.1		Delay2		Perc.2]	Re	eserved

Field	Description		
UpdateInterval	Minimal interval in msec for which the reported delay values are valid. If not updated, the descriptor is valid for another interval.		
Delay0	Delay in msec		
Perc0	Percentile for Delay0		
Delay1	Delay in msec		
Perc1	Percentile for Delay1		
Delay2	Delay in msec		
Perc2	Percentile for Delay2		
Delay5	Delay in msec		
Perc5	Percentile for Delay5		

Benefits of being wireless-aware

CNC knows the WTSN dynamic range

- Realistic range of MCS/data-rates can be used to report reasonable delay bounds to CNC
- CNC scheduling can account for wireless variability (e.g., 99.9%ile, 99.99% vs. 100%-ile worst-case)

Flexibility

- Designers can determine trade-off between necessity for gate recomputation vs. efficiency
- Systemic degradation can still be accommodated (i.e. by exception)

Key E2E TSN Benefits

- Gate over-runs (e.g. due to low speeds) mitigated via aggressive scheduling of upstream nodes
- Overall latency can be reduced by using highconfidence 99%-ile delay bounds

Control-Aware Network Management

Control systems treat the "network" as a (wired) pipe

What if, rather than trying to design a "deterministic" pipe, we look at **meeting control, or task/application specific goals** (e.g., stability, minimal drift, etc.)?

Communications-Control Co-design

M. Eisen, et al, "Communication-Control Co-design in Wireless Edge Industrial Systems", 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), pp. 1-8.

Dynamic Reliability in Wi-Fi 6 Scheduling

Learned codesign policy for robotic pick and place task

Conveyor belt robot

# systems	Dynamic reliability	Fixed reliability					
8	97%	100%					
10	95%	93%					
12	95%	83%					
14	88%	72%					

[M. Eisen et al, Reliability Adaptation in Wireless Control with Reinforcement Learning, 54th Asilomar Conference on Signal, Systems, and Computers, Feb. 2020]

Dynamic Reliability (Co-design) for 5G

- In robotic manipulation use-case, a closed loop control system is formed over the 5G network.
- Co-design can improve the efficiency of 5G network by adapting the QoS in accordance with dynamics of the robotic control system.
- Co-design principle: adapt QoS depending on object's position

[A. Merwaday et al, Communication-Control Co-design for Robotic Manipulation in 5G Industrial IoT, IEEE INDIN 2023

Wireless-aware TSN configuration and management considerations

Network planning and access control policies

Spectrum

Interference

Variable link performance

Consider Application & Network Co-design

#