

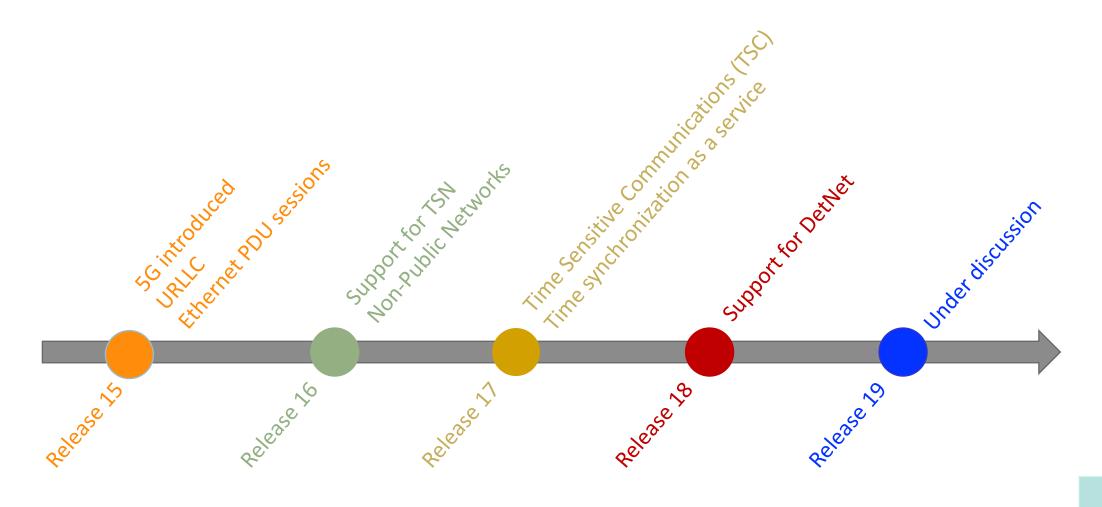
DETERMINISTIC6G

Tutorial:

5G Time Sensitive Communications (TSC)

Marilet De Andrade Jardim (Ericsson)

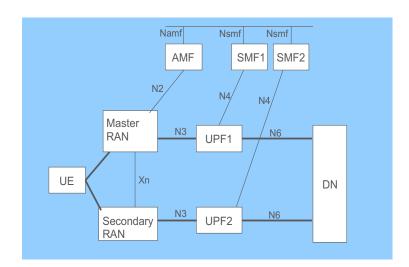
European Wireless, Rome - October 2nd, 2023



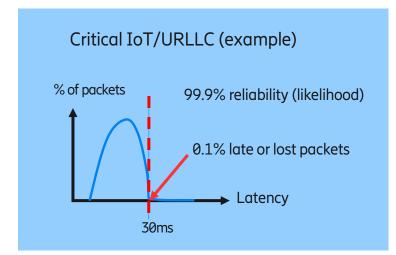
Agenda

- □ 3GPP Time sensitive communications (TSC) framework through releases
- □ URLLC features
- ☐TSN support
 - ☐ Scheduled traffic and Hold and Forward buffers
 - ☐ Per-stream filtering and policing (PSFP)
 - ☐ Time synchronization
- ☐ General TSC support
- ☐ DetNet support

3GPP 5G Time Sensitive Communications framework



Deterministic 5G - URLLC Features


URLLC - reliability

- High reliability by new NR RAN features: automatic repetitions, antenna techniques, robust physical channels
- ☐ Redundant user planes paths, example

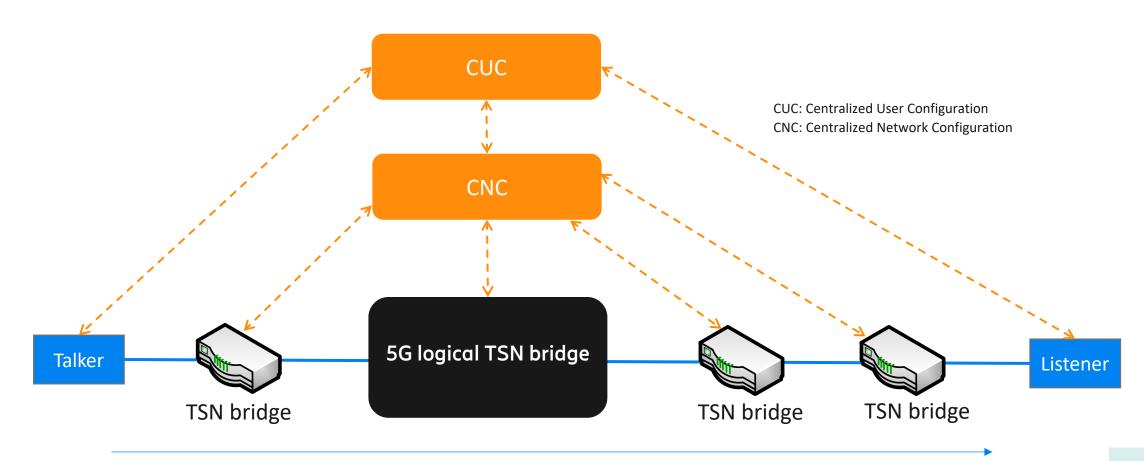
URLLC - latency

- Low latency enablers in NR RAN: OFDM numerology, minislots, grantfree, pre-emption
- Bounded latency key, not necessarily low latency

URLLC - QoS

- Standardized 5G QoS identifier (5QI) values for multiple time-critical services
- QoS monitoring (Packet Delay Budget)

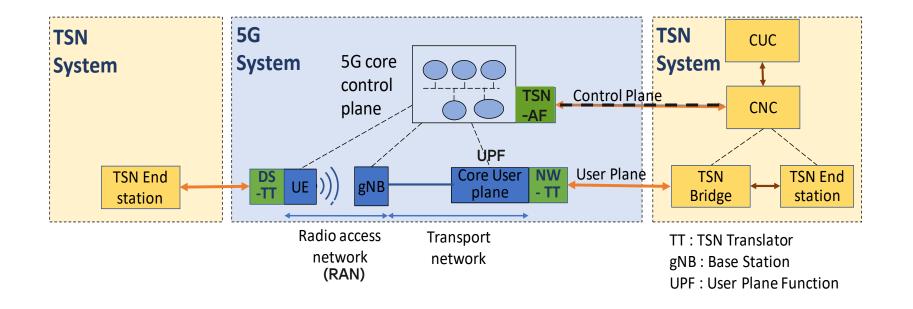
5QI values resource types:


- Guaranteed bit rate (GBR)
- (New) Delay Critical GBR

e.g., 71, 82 or 85

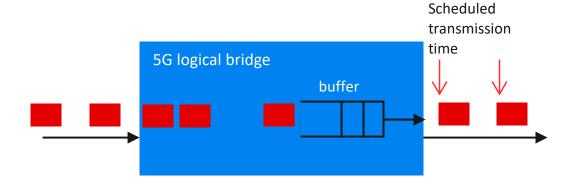
SQI Value	Resource Type	Default Priority Level	Packet Delay Budget (NOTE 3)	Packet Error Bate	Default Maximum Data Burst Volume (NOTE 2)	Default Averaging Window	Example Services
1	GBR (NOTES)	20	100 ms (NOTE 11, NOTE 13) 150 ms	1012	N/A	2000 ms	Conversational Voice
	(90781)	90	(NOTE 11, NOTE 12)		N/A	2000 ms	Mreaming) Beal Time Gamine, VZX
(NOTE 54)			50 ms (NOTE 13, NOTE 13)	10'0			messages thectricity distribution – medium voltage, Process automation - monitoring
1		50	500 ms (NOTE 11, NOTE 15)	10*	N/A	2000 ms	Non-Conversational Video (Outlered Streaming)
65 (NOTE 9, NOTE 12)		,	75 ms (NOTE 7, NOTE 8)	10-2	N/A	2000 ms	Mission Critical user plane Push To Talk voice (e.g., MCPTT)
(NOTE 12)		20	100 ms (NOTE 10, NOTE 15)	100	N/A	3000 ms	Non-Mission-Critical user plane Push To Talk voice
67 (NOTE 12)		15	300 ms (NOTE 10, NOTE 13)	10*	N/A	2000 ms	Mission Critical Video user plane
(NOTE 16)							
71		56	150 ms (NOTE 11, NOTE 15, NOTE 15)	104	N/A	2000 ms	"Live" Uplink Streaming (e.g. TS 26.238 [76])
72		56	300 ms (NOTE 11, NOTE 13, NOTE 15)	104	N/A	2000 ms	"Live" Uplick Streaming (e.g. TS 26.238 [76])
73		ss	300 ms (NOTE 11, NOTE 13, NOTE 15)	10*	N/A	2000 ms	*Lise* Uplick Streaming (e.g. 15 26.238 [76])
74		56	500 ms (NOTE 11, NOTE 15)	10*	N/A	2000 ms	"Live" Oplink Streaming (e.g. TS 26.238 [76])
76		56	500 ML (NOTE 11, NOTE 13, NOTE 15)	10*		2000 mi	(e.g. TS 26.239 [76])
12	Delay Criscal GRR	19	(NOTE 4)	10**	255 bytes	2000 ms	Olscrate Automation (see 75 22.261 [2])
83		22	10 ms (NOTE-II)	10*	1354 bytes (NOTE 3)	2000 ms	Obscrete Astomation (see TS 22.261 [2]): V2X messages (UE - RSU Platoceing, Advanced Oriving: Cooperative Lane Change with low InA, See TS 22.186 [111]):
			(NOTE 6)	10'5	1354 bytes (NOTE 3)		Intelligent transport systems (see TS 22.265 (2[)
85		21	5 ms (940TE 5)	10**	255 lytes	2000 ms	Electricity Distribution- Nigh veltage [see TS 22.261 [2]]. VZX messages (Remote Driving, See TS 22.386 [113], NOTE 161
и		18	5 ms (NOTE 5)	10-5	1354 bytes	2000 ma	VZX messages (Advanced Onlying: Collision Asoldance, Platooning with high LoA, See TS 22.386 (3.11)

Integrating 5G and TSN


TSN stream

Rel-16: 5G TSN support

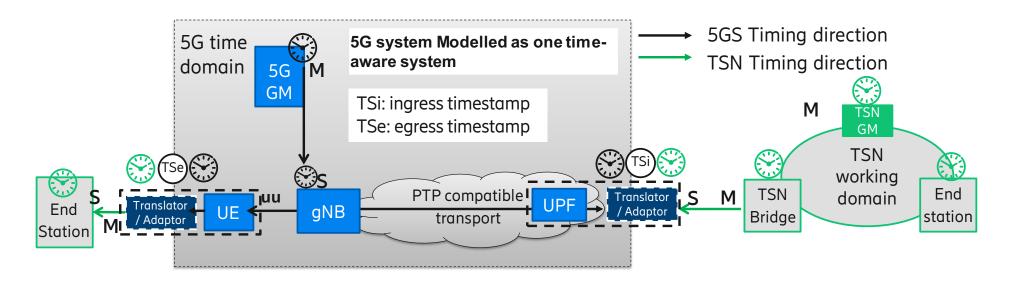
- ☐ TSN Translators (TT)
 - ☐ Control plane (Application Function, AF)
 - ☐ interaction with TSN controller (CNC)
 - ☐ QoS mapping 5G ⇔ TSN
 - port and bridge management


- ☐ User plane (Device-side TT: DS-TT, Network-side TT: NW-TT)
 - provide Ethernet/TSN interface (port)
 - ☐ implement TSN Qbv, PSFP gating
 - support gPTP time synchronization

Supporting "scheduled traffic" (aka Qbv): Hold and Forward buffers

- □ Supported at the DS-TT and NW-TT to mimic the behavior of scheduled traffic per traffic class at "egress port"
- The buffer at the DS-TT or NW-TT holds the packets when the Qbv gate is closed and forwards the packets when the Qbv gate opens.

□3GPP does not specify how the Hold and Forward buffers should be implemented



Supporting Per-Stream Filtering and Policing, PSFP (aka 802.1Qci)

- ☐ Time-gates (similar to Qbv) per TSN stream at "ingress port"
 - Open or Closed
- ☐ If a frame of a TSN stream arrives to ingress port when its TSN-stream gate is closed, the frame may be dropped
- ☐In 3GPP:
 - ☐ PSFP supported and enforced at the DS-TT and NW-TT
 - "TSN stream identification" function (IEEE802.1CB) is necessary to support PSFP
 - □ PSFP information used in 5G to derive **QoS requirements** and **TSC assistance information** useful for RAN scheduling such as periodicity.

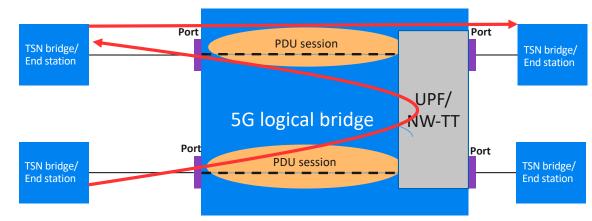
Time synchronization

Time-aware system: 5G supports generalized Precision Time Protocol (gPTP) as defined IEEE 802.1AS

Time synchronization is performed in two processes:

- 1. Sync TTs with 5G grandmaster (GM): Send 5G time to UE/DS-TT (provisioned by RAN) and to UPF/NW-TT.
- 2. Transfer gPTP message DL: (i) Add timestamp (TSi) to gPTP synchronization message at the ingress TT. (ii) At the egress TT, generate new timestamp (TSe), (iii) calculate TSe-TSi, (=5G residence time), (iv) remove timestamp Tsi from gPTP message, (v) update residence time field in (g)PTP message, and (vi) Forward to next Node.

Rel-17: Time Sensitive Communications (TSC)


Rel-16 gaps

- No UE-to-UE communication supported
- ☐ Only Downlink time synchronization supported

Rel-17 key solutions

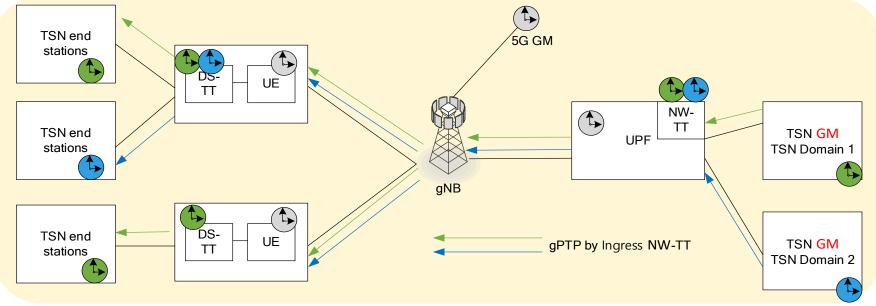
- □ UE-to-UE communication
- □ Uplink time sync distribution, and PTP (IEEE 1588)
- ☐General support for *Time Sensitive Communications (TSC), IP and Ethernet,* i.e., not only TSN
- ☐ Exposure of capabilities to external Application Function (AF)

TSN (special case of TSC) IEEE 802.1Q CNC

+UE-to-UE communication

TSC general case

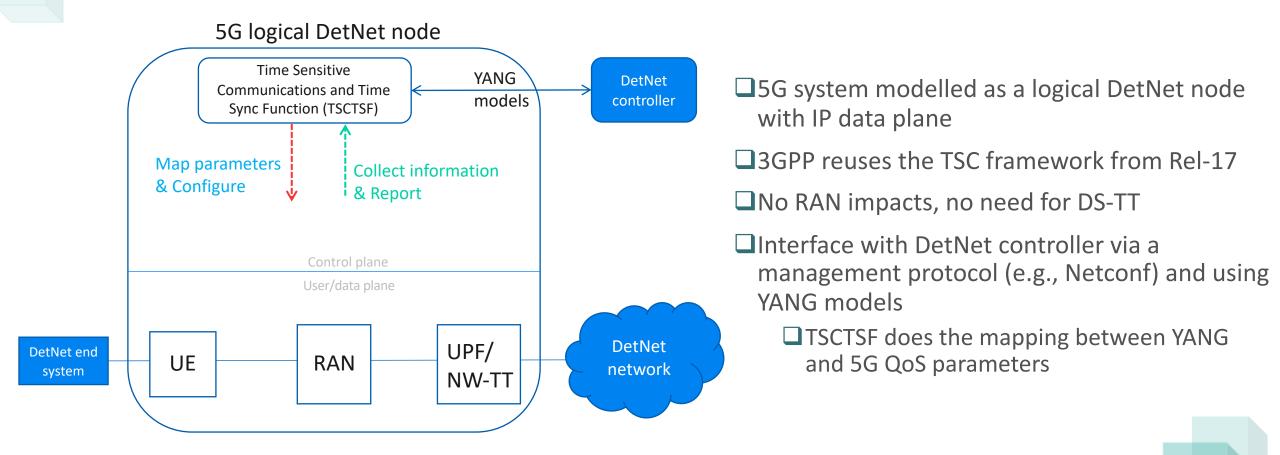
NEF: Network Exposure Function


TSCTSF: TSC and Time Synchronization Function

Time sync message distribution in 5G

Downlink direction: Grandmaster (GM) is behind UPF (Rel-16)

Every (g)PTP message is sent downlink to all UEs/DS-TTs.


Uplink direction: Grandmaster GM is behind a Device (Rel-17)

Messages are distributed uplink to NW-TT and also downlink (using local switching at UPF) towards all other DS-TTs.

TSN GM 5G GM TSN Domain 1 UE NW-TSN end TT TSN GM UPF stations TSN Domain 2 TSN Domain 1 **UE-to-UE** communication gNB DS-TSN end TSN end gPTP by Ingress DS-TT TT stations stations TSN Domain 2 Locally-switched gPTP by Ingress DS-TT

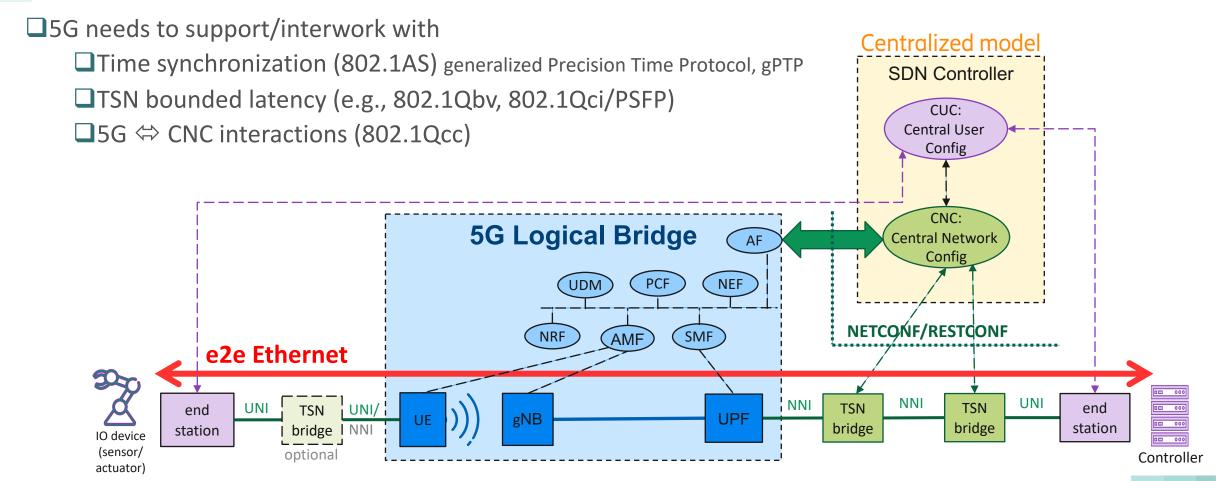
Rel-18: 5G support for DetNet

Further Reading

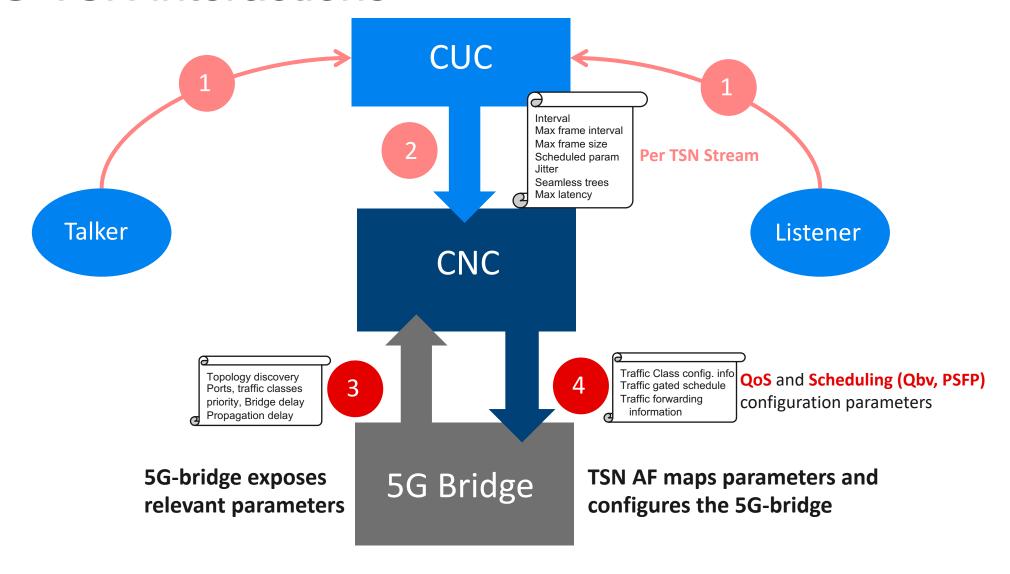
- □3GPP, TS 23.501, "System architecture for the 5G System (5GS)": Specification # 23.501 (3gpp.org)
- □3GPP, TR 23.700-46, "Study on 5GS DetNet interworking": Specification # 23.700-46 (3gpp.org)
- □ IEC/IEEE, "IEC/IEEE 60802 TSN Profile for Industrial Automation": https://l.ieee802.org/tsn/iec-ieee-60802/
- □5G-ACIA, white paper "Integration of 5G with Time-Sensitive Networking for Industrial Communications",
- ■EU project 5G-SMART, "Second report on new technological features to be supported by 5G standardization and their implementation impact": https://5gsmart.eu/wp-content/uploads/5G-SMART-D5.3-v1.0.pdf

THANK YOU

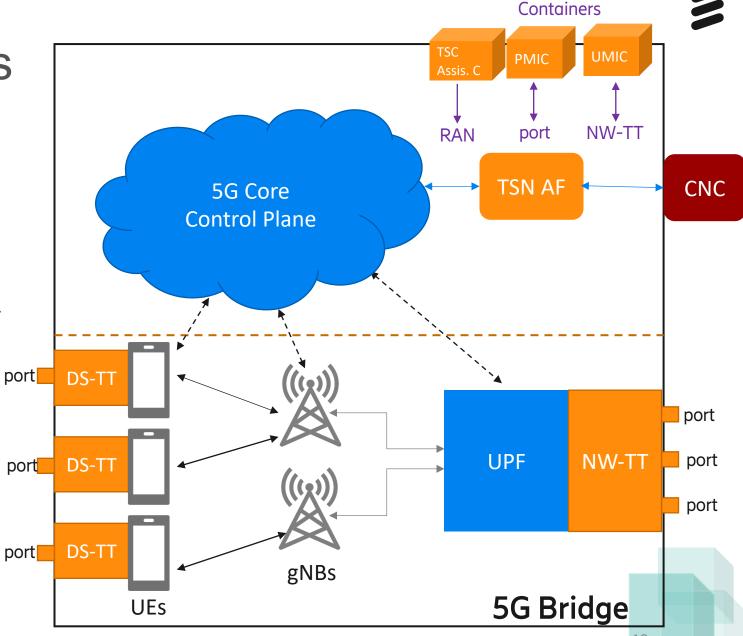
E-mail: marilet.de.andrade.jardim@ericsson.com



Extra material


Rel-16: 5G-TSN integration

☐ Time Sensitive Networking (TSN): a set of IEEE 802.1 standards used to guarantee delivery (with zero loss or delay due to congestion) of a data packet within a guaranteed time window.

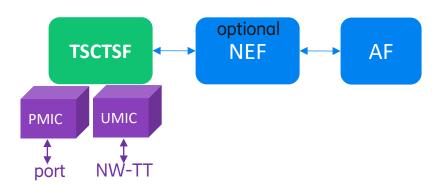

5G-TSN interactions

5G (TSN) components

- □ DS-TT and device-side ports
- NW-TT and network-side ports
- TSN AF: interact with **CNC** to expose bridge and port information, and to configure the 5G bridge and its ports
- Port Management Information Container (PMIC): exchange information between DS-TT and TSN-AF, contain **Qbv, PSFP, 802.1AS** information
- ☐ User-plane Management Information Container (UMIC): exchange information between NW-TT and TSN-AF
- ☐ Time Sensitive Communication (TSC)
 Assistance container
 - ☐ Transports TSC assistance information (TSCAI) useful for RAN scheculing

TSC Assistance Information

TSCAI:


- ☐ is provided to RAN (gNB)
- □ is based on traffic characteristics initially obtained by AF
- ☐ is optional
- □allows the 5G-RAN more efficiently schedule radio resources for periodic traffic

TSCAI

- Burst Arrival Time is the latest possible time when the first packet of the data burst arrives at the RAN (DL) or the egress of the UE (UL)
- Periodicity is the time period between start of two bursts
- Flow Direction (UL or DL), corresponds to the Direction of the QoS flow
- Survival Time (new, Rel-17) refers to the time period an application can survive without any burst.

3

Rel-17: Time Synchronization as a service

- ☐ AF:
- ☐ learns the 5GS capabilities to support time synchronization
- ☐ may request Activation/ Deactivation of the Time Synchronization Service for targeted UEs
- ☐ may provide requirements used to configure the time synchronization distribution to targeted UEs
- **NEF**: authorizes the AF requests if AF is 3rd party
- ☐ TSCTSF (or TSN AF):
 - determines the (g)PTP functionalities supported by DS-TT and NW-TT ports based on information in PMICs
 - configures the port states (master, slave...) based on results of BMCA running in NW-TT and shared with TSCTSF/TSN AF via UMIC
 - □ configures clock parameters (provided by AF) using PMIC/UMIC in case the 5GS acts as GM clock
 - □ calculates per-UE air interface error budget based on requested time error budget provided by AF, and delivers it to RAN, such that RAN may decide whither to apply a delay compensation method to guarantee time error budget.

Interaction with DetNet Controller

- ☐ TSCTSF reports the following information to DetNet controller for each interface/port:
- Type of interface,
- IP address,
- subnetwork (prefix length),
- Neighbor address
- MAC address
- MTU size.

☐ TSCTSF maps DetNet configuration parameters into 5G parameters:

DetNet parameters	5G parameters		
Max-latency	Required delay		
Min-bandwidth	Guaranteed Flow Bit Rate (GFBR)		
Max-loss	Required Packet Error Rate (PER) -new parameter for		
	Release 18		
Max-consecutive-loss-tolerance	Survival time— when such mapping is possible, such		
	as when there is only a single packet per interval.		
Interval	Periodicity		
max-pkts-per-interval * (max-payload-size +	Max burst size		
protocol header size)			
max-pkts-per-interval * (max-payload-size +	Requested Maximum Flow Bit Rate (MFBR)		
protocol header size)/ Interval			
DetNet flow specification	3GPP flow description (also including the DSCP value		
	and optionally IPv6 flow label and IPSec SPI)		