

DETERMINISTIC6G

Dependable 6G Summer School Sep 8th -10th , 2025 KTH, Stockholm, Sweden

EXOSKELETONS FOR ASSISTANCE AND REHABILITATION OF HUMAN MOTOR FUNCTIONS

Emilio Trigili, PhD Assistant Professor, Scuola Superiore Sant'Anna emilio.trigili@santannapisa.it

TABLE OF CONTENTS

01	INTRODUCTION Application domains of exoskeletons
02	EXOSKELETONS Ergonomic design
03	CASE STUDY The Active Pelvis Orthosis exoskeletons
04	CASE STUDY The NEEM and NESM exoskeletons

AGEING OF THE POPULATION

By 2060, EU-27's population [Eurostat 2010]

Median age will be 47.6 years (from about 41 in 2010)

29.5% of the population will be 65 years of age or over, (17.4% in 2010)

The ratio of senior citizens (> 64) to working citizens (19–65) – the "old age dependency ratio" – is expected to change from 25.9% per cent in 2010 to 52.6%

Robotics technology (and wearable robotics) can be a solution to foster welfare sustainability

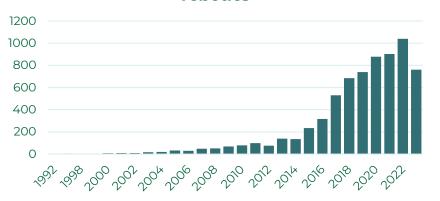
Toward sustainable and active ageing

Age-associated chronic diseases

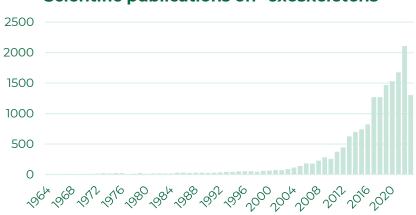
- Neurological diseases (stroke, multiple sclerosis, Parkinson's)
- Dysvascular amputations (e.g., diabetes)
- Work-related musculoskeletal disorders

Wearable robotics for sustainable and active ageing:

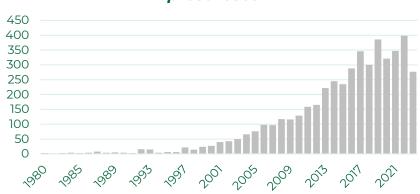
- Rehabilitation and daily-life assistance of people affected by chronic diseases
- Active engagement of healthy elderly in the society, with technologies capable to preserve workers health and medical conditions



Wearable robots are mechatronic systems designed around the shape and functions of the human body, with segments and joints correspondent to those of the person coupled with it


Wearable robotics

A FAST GROWING SCIENTIFIC RESEARCH FIELD


Scientific production on "wearable robotics"

Scientific publications on "exoskeletons"

Scientific publications on "robotic prostheses"

EXOSKELETONS

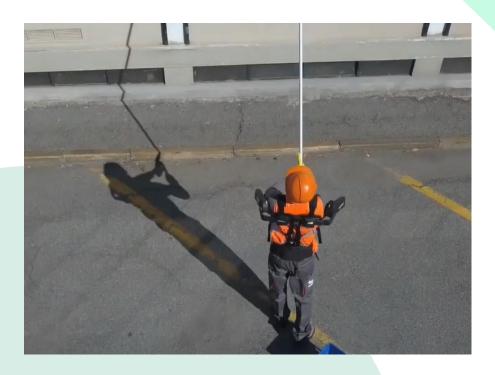
Application domains

EXOSKELETONS Application domains

Consumer

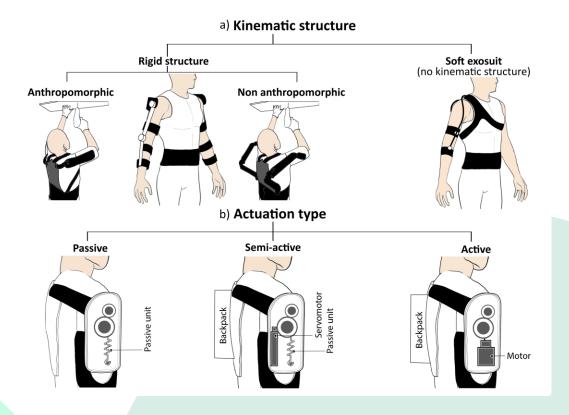
Healthcare

Military


Industry

Monica L., et al. (2020) Occupational exoskeletons: Wearable robotic devices and preventing work-related musculoskeletal disorders in the workplace of the future, pp. 1–12.

OCCUPATIONAL EXOSKELETON (OES): A DEFINITION


Wearable assistive devices intended "to reduce the physical load on workers carrying out demanding activities in several occupational sectors."

In the long term, these technologies are expected to improve the working conditions of the operators and help prevent work-related musculoskeletal disorders, particularly when other organizational measures are not feasible.

INDUSTRY

Crea, S., et al. (2021). *Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces.* Wearable Technologies, 2, E11.

Occupational exoskeletons can be classified based on their (i) kinematic structure and (ii) type of actuation and (iii) anatomical site of interest

INDUSTRY

After an impairing event, exoskeletons can be used to amplify and restore users' residual movement capabilities and functionalities

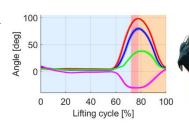
Impairing event	Acute phase	Chronic phase	. (
	REHABILITATION	ASSISTANCE	

EXOSKELETONS

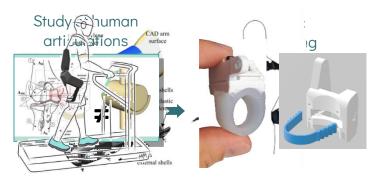
Ergonomic design

ERGONOMIC DESIGN OF WEARABLE ROBOTS

Challenger Humann Rebots Jumbiferie



Physical Human-Robot Interface


H Compliance
O Joint axes alignment
M Weight support
O T

Interfaces to detect user's intention

Movement classification

Kinematic design Mass distribution Tailoring

EXOSKELETONS

Ergonomic design

KINEMATIC DESIGN

How to couple human and robotic chains

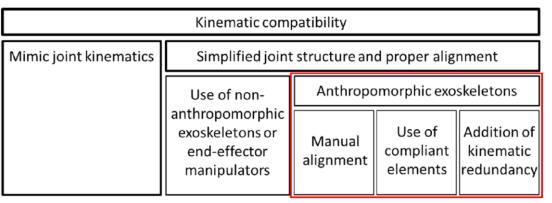
OUTPUT IMPEDANCE

How to make the robot "transparent" to user residual movement abilities

FIVE PILLARS OF ERGONOMICS

INTUITIVENESS

How to make the robot understanding your intentions


MASS DISTRIBUTION

How to reduce and allocate weight

TAILORING

How to customize the robot to user needs

Misalignment compensation

We refer to kinematic compatibility as the correct alignment of the axes of rotation of the robot and the human

It is crucial to ensure the correct **transfer of torque** from the exoskeleton to the wearer. If these are not properly aligned, parasitic forces and torques are induced, which may cause **discomfort or pain** and may potentially even lead to long term injury, or dislocation of the joint by frequent use of the device.

Fully **mimicking** the kinematics of the anatomical joint requires exact **knowledge of the joint's instantaneous axes of rotation** at any given time during motion.

Since human joints are covered with a multitude of tissues, it is **difficult** to determine the exact location of the joint rotation axes.

Substantial inter- and intra-patient differences further decrease the accuracy of the estimation methods, making it impossible to obtain an exact model of anatomical joint kinematics.

Anthropomorphic exoskeletons require misalignment compensation techniques to guarantee high-quality interactions

The rotation of an exoskeleton joint, which is misaligned with respect to a human joint, is only possible due to the presence of soft tissues and cartilages that can withstand large deformations.

In such a situation, the forced translation will result in large depressions of the soft tissue between the exoskeleton and the human skeleton.

KINEMATIC DESIGN

How to couple human and robotic chains

The total misalignment between an exoskeleton and its user is usually a combination of four separate effects

Kinematic mismatch → number of DOFs (e.g., shoulder)

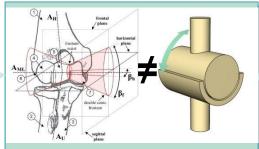
Migration of the instantaneous center of rotation → small translations in human (e.g. knee, elbow)

Initial offset \rightarrow likely to increase with movement

Movement mismatch → interface migration

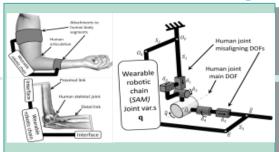
Different misalignment compensation techniques were introduced in the literature for anthropomorphic exoskeletons

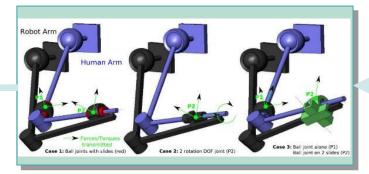
Misalignment compensation techniques									
Manual	Use of compliant elements		Addition of kinematic redundancy						
alignment	Brace/frame level	Joint level	RRP	RPP	RRR	other			


ITERATIVE PROCESS!

KINEMATIC DESIGN

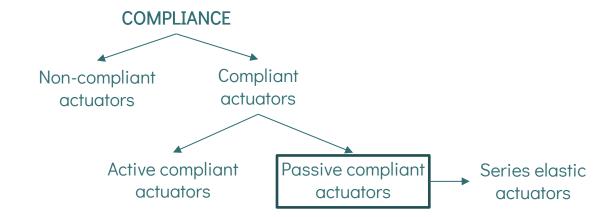
How to couple human and robotic chains


Study of human articulations


Implementation and validation

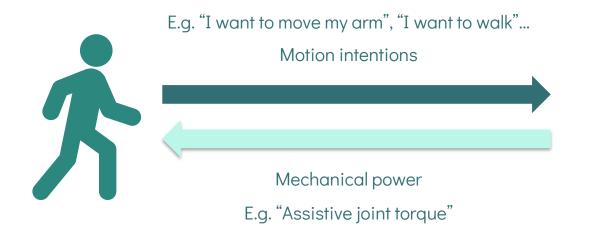
HR kinematic chains modeling

Interface kinematic design



OUTPUT IMPEDANCE

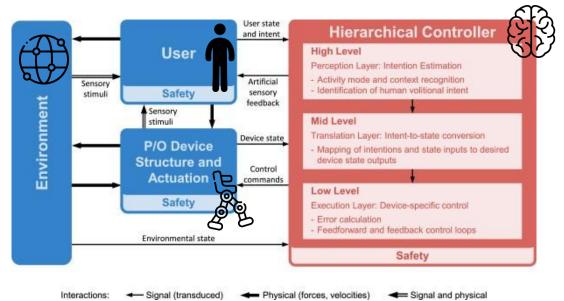
How to make the robot "transparent" to user residual capabilities


A "cooperative" wearable robot must be perceived as an extension of wearer's body and it must be completely transparent to the user residual movement ability (i.e., minimum to null output impedance)

INTUITIVENESS

How to make the robot understanding your intentions

The system should understand the user's **movement intention**: a control layer interprets the sensory information and decides when and how to deliver mechanical power to the user to implement an "assistive strategy"



How to make the robot understanding your intentions

"The robot should "intend" the human desired intentions without involving cognitively the user in the decisional process ensuring high success reliability"

How to reduce and allocate weight

Adding masses far away negatively affects the metabolic consumption. Different approaches can be adopted to enhance the mass distribution:

- Small distal masses can increase step length (due to inertia) and reduce step height (due to weight)
- Lightweight materials
- Integrated power/control electronics, minimized wiring
- Actuation units located away from the moving parts
- Cable/linkages transmission
- Even mass distribution around the natural COM

TAILORING

How to customize the robot to user needs

Inter-subject variability can be faced adopting adjustable and replaceable modules for anthropometric tuning and tailored customized orthoses

Moreover, an extra effort should be put on enhancing the cosmetic appearance of the exoskeleton

20+ projects10+ platforms20+ researchers

WRLab

LOWER-LIMB EXOSKELETONS

The case study of the Active Pelvis Orthosis (APO)

How to personalize gait rehabilitation in ecological environment?

Accurate human-robot synchronization

Tailored robotic assistance

WR Lab 28

CASE STUDY - APO

ALPHA-APO

BETA-APO

GAMMA-APO

WEARABLE TECHNOLOGY, UPLIFTED LIFE

2017

2012

The Active Pelvis Orthosis (APO) is an exoskeleton for active assistance of the hip flexion/extension

Series elastic actuation having peak torque ~20 Nm and parasitic torques <0.5 Nm under 1 Hz (enhanced "transparent mode")

Passive degree of freedom for hip abduction/adduction

The APOs is portable (since Beta-APO) and weighs ~9 kg for Beta-APO and 6.5 kg for Gamma-APO

29

CASE STUDY – LOCOMOTION MODE RECOGNITION

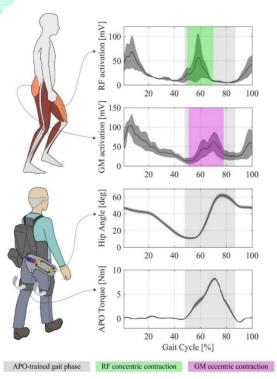
BETA-APO

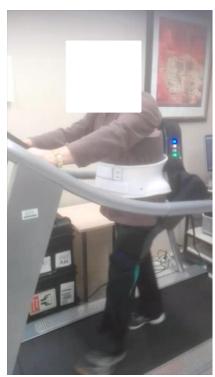
An intention detection strategy was implemented to recognize the locomotion mode, using kinematics data in a "fuzzy" logic-based algorithm

Intention Recognition
CLs++ orthotic modules

Accuracy of 99.4% computed on > 10000 steps performed by six subjects

CASE STUDY - GAIT PHASE ESTIMATE

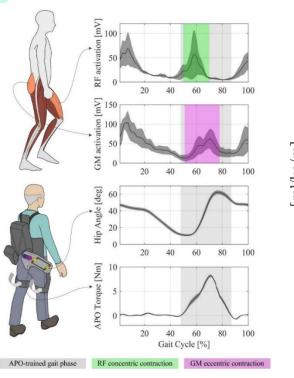


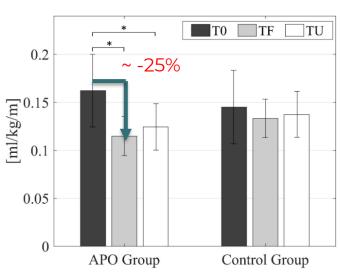


A reliable real-time estimate of the **gait phase** is key to generate assistive profiles which are synchronous with the locomotion.

The APO implements adaptive oscillators (AOs), which are mathematical tools that synchronize with the phase and frequency of a periodic input signal (e.g., the hip angle). The AOs allow a real-time estimate of the gait phase and the prediction of the hip angle trajectory.

CASE STUDY - GAIT PHASE ESTIMATE

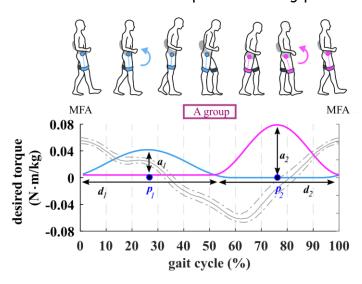


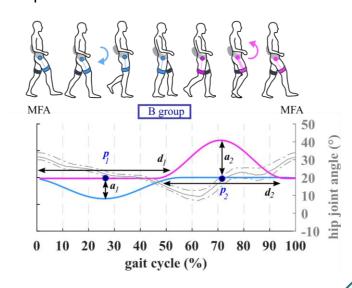

The gait phase and the hip angle estimates provided by the AOs allow the implementation of different assistive strategies

Hip joint torque feed forward

Virtual stiffness

Case study – gait phase estimate





The APO group showed significant reduction in Metabolic Cost of Transport at post-training (TF) and at one-month follow-up (TU)

CASE STUDY - GAIT PHASE ESTIMATE

A Group: Knee hyperxtension, B Group: hif flexion deficit

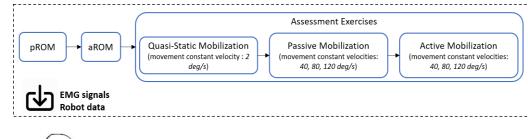
Livolsi et al., Sci Rep, 2022 WR Lab

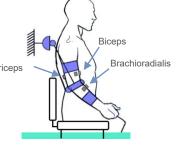
UPPER-LIMB EXOSKELETONS

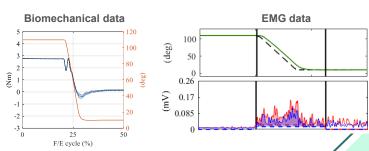
The case study of the NeuroExos Elbow Module (NEEM) and NeuroExos Shoulder-Elbow Module (NESM)

CASE STUDY - NEEM

- The NeuroExos Elbow Module (NEEM) is an active exoskeleton for the assistance of the elbow flexion/extension
- The active joint has a SEA architecture having peak torque of 30 Nm






- Tested on 17 participants during 10 daily rehabilitation sessions for the treatment of elbow spasticity
- The NEEM is currently tested in an experimental protocol for the assessment of elbow spasticity

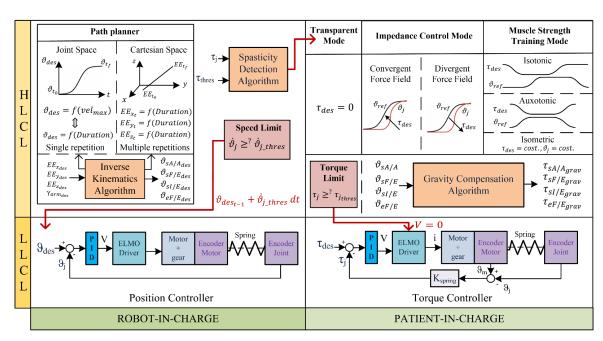
CASE STUDY – EVALUATION OF ELBOW_SPASTICITY

CASE STUDY - NESM

NESM-ALPHA

NESM-BETA

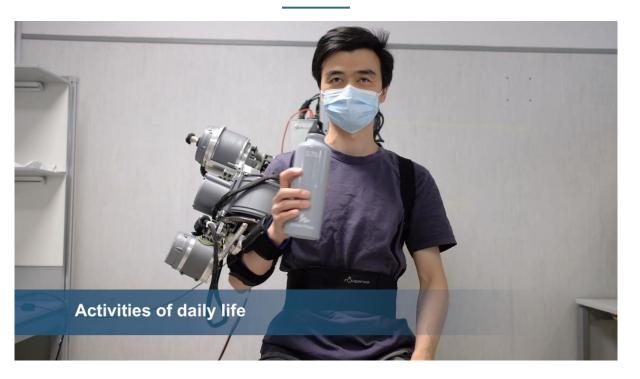
NESM-GAMMA



2015 2019

The NeuroExos Shoulder-Elbow exoskeleton (**NESM**) is an exoskeleton for active assistance of the shoulder (3 DOFs) and the elbow (1 DOF) Series elastic actuation having peak torque ~30 Nm (shoulder) and ~15 Nm (elbow) and "transparent" behavior via gravity compensation

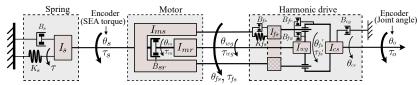
Passive DOFs for self-alignment to the shoulder and for trunk compensatory movements


CASE STUDY – NESM CONTROL ARCHITECTURE

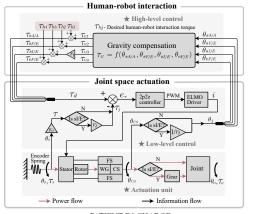
- Gravity compensation algorithm to compensate the exoskeleton's weight
- Implementation of different rehabilitative exercises based on torque control (patient-in-charge) or position control (robot-incharge)

Trigili E., et al. "Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation." IEEE/ASME Transactions on Mechatronics 24.4 (2019)

NESM-GAMMA



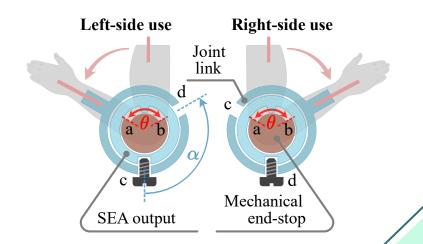
NESM-GAMMA


Compliance by mean of mechatronics ...

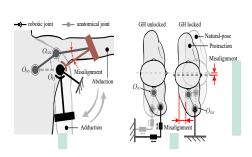
Pan et al., IEEE RAL, 2022

Lumped-element linear model of the RFSEA

PATIENT-IN-CHARGE


... and control

NESM-y: ONE DEVICE, BOTH HEMIPARETIC SIDES



Pan et al., IEEE RAL, 2022

Design for either left or side use

FOCUS ON NESM-Y SHOULDER KINEMATICS

How we designed it

Pan et al., IEEE TNSRE, 2023

ACKNOWLEDGEMENTS

Prof. Nicola Vitiello, PhD (nicola.vitiello@santannapisa.it)

Prof. Simona Crea, PhD (simona.crea@santannapisa.it)

- 1. Dr. Andrea Baldoni (Senior researcher)
- 2. Dr. Lorenzo Grazi (Senior reseacher)
- 3. Dr. Andrea Pergolini (PhD student)
- 4. Filippo Dell'Agnello (Senior researcher)
- 5. Dr. Stefano Capitani (Senior researcher)
- 6. Dr. Michele Francesco Penna (Senior researcher)
- 7. Dr. Davida Astarita (Senior researcher)
- 8. Dr. Huseyin Eken (Senior researcher)
- 9. Dr. Ilaria Fagioli (Senior researcher)
- 10. Dr. Alessandro Mazzarini (Senior researcher)
- 11. Dr. Lisheng Kuang (Senior researcher)
- 12. Seemab Zakir (PhD student)
- 13. Sara Carmosino (PhD student)
- 14. Lorenzo Amato (PhD student)
- 15. Laura Manzetti (PhD student)
- 16. Luca Giordano (PhD student)
- 17. Salvatore Russo (PhD student)
- 18. Michele Foggetti (PhD student)
- 19. Faraz Shafi (PhD student)
- 20. Andrea Campanelli (PhD student)
- 21. Fabrizio Moncelli (PhD student)
- 22. Lorenzo Amati (PhD student)
- 23. Christina Chase-Markopoulu (PhD student)
- 24. Francesca Paola Maenza (Junior researcher)
- 25. Simone Prisinzano (Junior researcher)
- 26. Berkem Vural (Junior researcher)
- 27. Dr. Chiara Livolsi (collaborator)