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The Rediscovery of Latency during the 2010s

• Finite Blocklength Approximations

• Age of Information

• TSN

• URLLC

• Edge Computing

WHY?



Networked Cyber-Physical Systems

Reality Wireless Access ServerSensors

Actuators !

• From sensing applications to closed-loop control
• Dependability becomes the focus (latency & reliability)



URLLC: Application Fields

• Various application fields according to 3GPP:
• Rail-bound mass transit
• Building automation
• Factory of the future / industrial automation
• Smart living / smarty city
• Electric power distribution & power generation

• In addition:
• Support for autonomous devices (cars, drones, robots)
• Human-in-the-loop applications (AR / cognitive 

assistance)

3GPP, TR22.804 v1.0.0, December 2017



Range of Factory Automation Requirements

• Field-Level Control
• Cycle time: <10 ms
• Packet sizes: < 10 byte
• Reliability: > 1 – 10-6

• Inter-PLC Communication:
• Cycle time: < 50 ms
• Packet sizes: < 500 byte
• Reliability: > 1 – 10-6

Why turn to wireless?



Reality Check

• 10 years ago expectation that
• 5G would be driving digital transformation in automation through URLLC
• Ubiquitous deployment of edge computing driving XR
• TSN would have taken over the majority of field bus market

• Today:
• No URLLC
• Edge computing deployed as Telco edge, data sovereignty as driver
• TSN has small share of field bus market (but growing)



Latency and Reliability

• Definitions
• Latency: The time taken from when a packet arrives at the transmitter until it is 

successfully delivered to the receiver.
• Reliability: The ratio of successfully delivered packets to the total number of 

transmitted packets.

• URLLC Requirements [1]
Scenario Reliability Latency Requirement Packet Size

AR/VR 99.999% 1 ms 200 Bytes

Remote driving 99.999% 3 ms 1 MB/s

Electric Power 
Distribution

99.9999% 3 ms 100 Bytes

Industrial Automation 99.9999% 1 ms 32 Bytes

gNB UETransmitter Receiver

[1] Z. Zhu et al., "Research and Analysis of URLLC Technology Based on Artificial Intelligence," in IEEE Communications Standards Magazine, vol. 5, no. 2, pp. 37-43, June 2021, doi: 
10.1109/MCOMSTD.001.2000037.



• Latency Components

• Best-case Latency 

gNB UEBase Station
(gNB)

User Equipment
(UE)

Latency in 5G 

Queuing 
Delay

Transmission 
Delay

Decoding 
Delay

Feedback 
Delay

Packet 
Arrived

Slot Length Queueing Transmission Decoding 
[2]

Feedback 1 Cycle

1 ms 2ms 1 ms 570 us 1 ms 4.57 ms

0.5 ms 1 ms 500 us 357 us 500 µs 2.357 ms

4 Feedback 
Cycle

18.28 ms

9.428 ms

4 Repeated 
Cycle

7.57 ms

3.857 ms

125 us 250 us 125 us 178.5 us 125 us 0.679 ms 2.716 ms 1.054 ms

Latency of transmission cycle

[2] “NR; Physical Layer Procedures for Data,” 3GPP, TS 38.214, 03 2023, version 17.5.0.



1 ms Latency Scenario in 5G Sub6GHz band

• 1 initial Tx+ 1 ReTx can be only provided with numerology 2 within 1 ms
• However, numerology 2 is not mandatory 
• Device chipset manufacturers do not realize this URLLC feature

1 slot length in numerology 2 UL slots

TxDecoding= 161 𝜇s

Initial Transmission

Feedback= 1.8 𝜇s
DL slots

FeedbackTx= 250 𝜇s Decoding

1 Retransmission



The 6G Story: Towards a Cyber-Physical Continuum

14
• Ubiquitous provisioning of CPS through mobile networks

• Last decade: Pull towards compute, latency & reliability



Key Goals of 6G Cyber-Physical Networking

• Convergence among different technologies to enable CPS applications
• Scalability of communication and compute infrastructure to support CPS 

applications 

Scalability

Convergence

E2E 
Technology 
Integration

E2E Security

Predictability
Scalable/Flexible 

Vertical 
Interfacing

Sharma et al. “Towards Deterministic Communications in 6G Networks: State of the Art, Open Challenges and the Way Forward”, IEEE Access 2024.



Dependable Time-Critical Communication

• Dependable communication
• Quantitatively ascertain the delivery of required service performance for the communication that are agreed
• Identity upfront when these levels cannot be reached!

• Comprises several steps
1. Clarity on required and agreed service performance
2. Monitoring and prediction of delivered service performance
3. Automated service assurance
4. Feedback on service delivery to the application domain



Architecture Outline
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Towards Predictability and Adaptation

Mobile
Network Backbone

Wireless Domain

Edge 
Resource

Current Approach: Static 
requirements from applications, 

translated into large footprint in the 
infrastructure  

KPI

Alternative Approach: Predict 
network KPI and harmonize with 
application at run-time. 

Time [ms]
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Introduction
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Predicting QoS KPIs such as end-to-end delay in advance
• Enables proactive adaptation
• Probabilistic guarantees on end-to-end performance e.g. 99.999% reliable

Performance (denoted by r.v. Z): data rate or delay
Observations/conditions (denoted by r.v. X)

2/15



Distribution of performance for L time steps in future, given all observations until n

P(Zn+L | X0:n = x0:n)
we call forecast distribution.

• As L → ∞, for any system, P(Zn+L | X0:n = x0:n) → P(Zn+L)
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Title Research Field Year Predictability Measure
Are US stock index returns predictable?
Evidence from automatic autocorrelation based
tests

Finance 2013 Autocorrelation

Model-free quantification of time-series
predictability

Time Series Fore-
casting

2014 Permutation Entropy

On the predictability of infectious disease
outbreaks

Epidemiology 2019 Permutation Entropy

Limits of Predictability in Human Mobility Human Mobility 2010 Entropy Measures
Limits of Predictability for Large-Scale Urban
Vehicular Mobility

Transportation 2014 Entropy (Fano’s inequality)

On the Limits of Predictability in Real-World
Radio Spectrum State Dynamics

Communication
Networks

2015 Entropy (Fano’s inequality)

Predictability and Information Theory: Measures
of Predictability

Atmospheric Sci-
ences

2004 Predictive Information, Mu-
tual Information, etc

Table 1: Summary of Related Works on Predictability Measures
4/15
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System I: Unpredictable
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System II: Predictable?

Idea: The system is unpredictable if consideration of the observations makes no difference in
the forecast distribution.

5/15Mostafavi et al. “Predictability of Performance in Communication Networks under Markovian Dynamics,” IEEE Trans. VT, 2025.



Definition: A system is unpredictable if

Pr (Zn+L|X0:n = x0:n) = Pr (Zn+L)� (1)

when the future state Zn+L is statistically independent of the observations x0:n.

Predictability is a combined property of the system and the observations.

[1] T. DelSole,
Predictability and Information Theory. Part I: Measures of Predictability,
Journal of the Atmospheric Sciences, vol. 61, no. 20, Oct. 2004.

[2] T. DelSole and M. K. Tippett,
Predictability: Recent insights from information theory,
Reviews of Geophysics, vol. 45, no. 4, Dec. 2007.
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Cont.: Predictability measure is defined as the total variation distance between the forecast and
marginal distributions as

Dn(L) = |Pr (Zn+L|X0:n = x0:n) − Pr (Zn+L)|TV� (2)

Total variation distance example

For pmfs p and q, total Variation distance (TV) is a statistical metric distance defined by

TV(p� q) := sup
A⊂�

|p(A) − q(A)| = 1
2

�
z∈�

|p(z) − q(z)|� (3)
7/15



System Model

Discrete time system with time n

Subsystem m with Markov chain conditions: X (m)
n

• P(x � y ) = Pr(Xn+1 = y | Xn = x )
Transition probability from state x to state y .

• L step state transition probability PL(x � y ).
• PL(x � y ) → π(y ) as L → ∞.

Observability defects:
• Delayed observations, partial observations,

aggregated states e.g. On = Xn−d

Subsystem 1
Z (1)

n

X (1)
n

· · ·
· · ·

· · ·
Subsystem M

Z (M)
n

X (M)
n

On

Figure 1: Multi-hop communication system model with observable
measures being conditions and performance.

8/15



Predictability Analysis

Theorem 1: Predictability of a Markov-modulated process Zn with Markov chain probabilities {P , π} and
posterior distributions ry (z):

Dn(L) = 1
2

�
z∈�

|�
y∈�

(PL(x � y ) − π(y ))ry (z)|� (4)

Lemma: (Subadditivity of Predictability) The predictability of independent tandem multi-hop systems, is
upper-bounded via the sum of predictability of each hop as

Dn(L) ≤
M�

m=1
D (m)

n (L)� (5)

10/15



Goals
• Assess predictability under conditions of imperfect observations.
• Determine how the randomness of the condition transitions influences predictability.
• Derive solutions for the predictability of sojourn time in Geo/Geo/1/K queues.

Geo/Geo/1/K queue
Performance metric: the sojourn time Zn
State: system size Xn
with µ and λ as service and arrival probabilities.

0 1 � � � K

1 − λ(1 − µ)
λ(1 − µ)

� � �
λ(1 − µ)

µ(1 − λ)

� � �
λ(1 − µ)

µ(1 − λ)

1 − µ(1 − λ)

µ(1 − λ)
Figure 2: Geo/Geo/1 Markov chain states and transition probabilities
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Numerical Evaluations
A Geo/Geo/1/K system with µ = 0�5, ρ = 0�85, and K = 128.
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Figure 3: Posterior (analysis) and prior (marginal) distributions

0 500 1000 1500 2000

Lead Time

0

0.2

0.4

0.6

0.8

1

P
re

d
ic

ta
b
il

it
y

Figure 4: Exact and approximate predictability
evaluations
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Queue 1

µ = 0�4

X (1)
n

Queue 2

µ = 0�38

X (2)
n

Queue 3

µ = 0�4

X (3)
n

x

in out

Geo/Geo/1 queues with λ = 0�34.
UB: Subadditivity of Predictability.
Curves that extend further to the right
represent higher predictability.
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Delay Prediction Problem

• Focus on a single wireless link (for the beginning)

• Delay is a stochastic metric of a queuing system

• We are interested in a prediction of delay over some time horizon -> requires a stochastic 
characterization of the system delay over time horizon given current conditions!

delay



Fundamental Approaches



Model-driven Approach Realistic?

• Predictability is needed for real systems -> Cannot be captured by model-driven approaches.

Data Flow in MAC and PHY Layers

MAC uses PHY’s transport channels: PDSCH and PUSCH

At every TTI, at most one transport block to/from a device

Scheduler determines the resource blocks and transport format using CQI:
I Transport-Block Size (TBS)
I Modulation and coding scheme (MCS), and antenna mapping

11 / 17



State-of-the-art: Data-driven Delay Prediction

Paradigms Use cases and Techniques Maturity & Specialization References

Statistical 
frameworks

• Simple time-series prediction
• ARIMA,SARIMA, etc

• Mature as baselines
• Effective for simple trends
• Struggles with non-linearity

Moreira et al. [2020]
Lv et al. [2025], 

Unsupervised 
ML

• Feature engineering and Anomaly 
detection
• PCA, Autoencoders, K-means

• Preprocessing step
• Not used for direct forecasting

Han et al.[2022]

Classical ML • Model non-linear relationships and 
classification of KPI into bins
• Regression, SVM combined with  
various boosting

• Mature & strong baselines
• Interpretable & efficient
• Limited for non-sequential
dynamics

Khatouni et al. [2019],
Flinta et al. [2020],
Moreira et al [2020].
Ahmad et al [2021],

Temporal 
models

• Sequence modeling of delay using 
historical KPI data
• RNN, LSTM, GRU, Transformer

• Mature & widely adopted
• Captures temporal dependencies
• Backbone of delay prediction
• Limited Interpretability and 
extreme, data and compute 
requirements

Barmpounakis et al. [2021],
Mostafavi et al. [2025],
Dang et al. [2023],
Kai et al. [2024],
Zhou et al. [2024],



Data-Driven Approach

• Collect data from the system!

• Interpret the problem definition as conditional density estimation problem : 𝑝̂ 𝑌 𝑋 = 𝒙 ≈
ℙ 𝑌 𝑋 = 𝒙

• Requirement: Fit a parametric density function 𝑝̂! with parameter 𝜃 to the conditional data 
set

Leverage Mixture Models!



Mixture Density Networks (MDN)
• How to find the parameters based on the conditions?

• Use a neutral network ℎ" to map 𝑋 to 𝜃, i. e. 𝜃# = ℎ"(𝑥#)

Through neural network training the conditional likelihood of the i.i.d samples 
{ 𝑥!, 𝑦! , 𝑥", 𝑦" …(𝑥#, 𝑦#)} is maximized and  )𝜑$,& = 𝑝̂'(𝑌 > 𝜏|𝑋&)



Extreme Value Theory Mixture Models

• Remaining open issue: How to devise the mixture, i.e. how many centers (random variables) 
and which ones?

• Choice heavily influenced by tail behavior:

Mostafavi et al. “Data-Driven End-to-End Delay Violation Probability Prediction with Extreme Value Mixture Models,” IEEE/ACM SEC 2021.



A Synthetic (Extreme) Evaluation Example

• 3-hop queueing system, system state
characterized by queue length

• Gamma-distributed service

Numerical Evaluation - Methodology

(a) Experiment setup (b) Tail probabilities for the state q= {1,4,2}

I Service processes: Heavy tail Gamma distributions with µ = 1 and independent.
I Arrival process: Deterministic with � = 0.9.

21 / 31

Choice of centers plays huge role!



Evaluation Example Cont.

Does adding Gaussian centers help? Does leveraging more data help?



Indoor Testbed

Container-based cloud and radio testbed

- 12x servers
- PTP clock synchronized

- 24x radios
- 10x Software-Defined Radios (SDRs)
- 10x 5G Advantech routers as UE
- Ericsson private 5G - 4x radio dots

- 10 TB storage
- Block and object store

Software framework focus: Automation and Reproducibility

https://expeca.proj.kth.se/
github.com/KTH-EXPECA

https://expeca.proj.kth.se/


Methodology

• Measurements taken on COTS and OAI 5G setups through EDAF

• Latencies (UL, DL and RTT) measured between the end node and the edge server via IRTT

• UE position and RSRP measured for the COTS 5G setup 

• MCS observed in the OAI 5G setup

S. Mostafavi et al., “EDAF: An End-to-End Delay Analytics Framework for 5G and Beyond Networks”, IEEE Infocom Workshop. 2024.



Latency Prediction COTS 5G

GMEVM provides better predictions than GMM

MDN Gaussian Mixture Model (GMM) and 
Gaussian Mixture Extreme Value 
Model (GMEVM)

Neural Network 4 hidden layers ([10, 50, 50, 40])), 15 
Gaussian centers

Training samples 4M samples (66 min), 80k (17 min) and 5k 
(5 min)

Platform (OS, 
hardware)

Intel(R) Core(TM) i9-10980XE CPU @ 3.00GH, 
125GB RAM, 28 cores assigned

Mostafavi et al. “Data-Driven Latency Probability Prediction for Wireless Networks: Focusing on Tail Probabilities,” IEEE Globecom 2023.



Latency Prediction of SDR 5G

• Less clear situation for SDR 5G … but good fit in both cases.



Best tools to capture 
temporal dependencies

Use SOTA in time-series forecasting

RNNs, LSTMs, Transformers
Enable large-scale, temporal predictions

Manage data dimensions 
(network insights & traffic properties)

Tokenization techniques from LLMs

Compactly representing 
high-dimensional, heterogeneous data

Probabilistic data-driven prediction

Mixture density networks (MDN)
Useful predictions, uncertainty included

Temporal Modeling



System Description

Periodic packets on 5G uplink (Ts, Bs)

Packet n's latency random variable Yn

Key sources of packet latency include:

- Channel-Induced Delays: 
- HARQ retransmissions, RLC retransmissions if HARQ repeatedly fails

- Scheduling-Induced Delays: 
- Packets may be queued if they arrive at times unfriendly to the 5G TDD pattern or if resources are limited.



Historical data reveals trends or patterns beyond current state (xn).

Objective: Predict the delay distributions for all L future packets: Yn , … , Yn+L-1

Capture the relationships between previous observations and future delays.

Inputs: ( H ) packet delay context vectors ( xn ):
- Traffic properties: packet size, periodicity, …
- Network conditions: CQI, SINR, …
- Retransmission counters: HARQ retx and RLC retx



Prediction Approach

Fixed-size tokens (S) Parameters (V)

M

S

(1) Tokenization
Efficient temporal learning

Transfer learning

(2) LSTM or 
Transformer

(3) Parametric 
Delay Density

Mostafavi et al “Probabilistic Delay Forecasting for in 5G using Recurrent and Attention-based Architectures”, ArXiv 2025.



Temporal Deep Learning Methods

Recurrent Model

RNN or LSTM
Simple, but fails at longer dependencies

Attention-Based Model

Transformer
Can learn arbitrary far dependencies



Dataset Creation and Training

A traffic generator runs to capture packet-level context vectors and delays.

Each sample is a packet record containing

- A “history window” (H past packets) 
- The true delay values for the following L packets.

The model optimizes a negative log-likelihood (NLL) loss from

- Predicted delay distributions and the true delays



Evaluation

Data collection:

- Openairinterface 5G on ExPECA
- EDAF 2.0, collecting per packet in addition to the delay:

- Packet size (continuous)
- Inter-arrival time (continuous)
- Packet arrival slot (discrete)
- MCS index (discrete)
- HARQ retransmission count (discrete)
- RLC retransmission count (discrete)

Experiments:

A) Single packet inter-arrival time: 50ms, and size: 200B
B) Packet size 100B with multiple inter-arrival times:

- 10ms, 20ms, 50ms, 100ms

Training and inference:

- Pytorch implementation (integrates with EDAF)
- Dell Server with Nvidia L4 GPU



Benchmarks

Single-Step Models (SOTA)
- MLP (37k param.)

Fully connected feed-forward network
Outputs a single delay prediction (of all future packets)

- LSTM-SS (33k param.)
Incorporates past sequence information using a recurrent (LSTM) encoder
Outputs a single delay prediction similar to MLP

Multi-Step Models (Our proposed approaches)
- LSTM (33k param.)

Recurrent architecture autoregresses over future packets
Generates delay distribution predictions for multiple upcoming packets

- Transformer (78k param.)
Uses self-attention to process the history window
Employs an encoder-decoder structure for multi-step forecasting

Transformer 5k, H:100, L:100

MLP 5k, H:1, L:100



Models Accuracy Analysis

Comparison of model accuracy across different prediction 
horizons. All models were trained on 5k samples exp B



Models Complexity Analysis

Training times for H:100, L:100 and 
different models

Comparison of model accuracy across 
training dataset size, exp B
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Conclusions

• Cellular network infrastructures today are not the backbone for CPS deployment

• 6G aims at enabling the cyber-physical continuum

• One direction in enabling it:
• Make latency evolution more transparent along the entire ‘loop’
• Identify when degradations occur, harmonize with application
• Performance prediction becomes key element!

• Decompose into predictability and practical prediction
• Theoretical formulation of predictability and insights
• Architectures for probabilistic latency prediction


