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The Rediscovery of Latency during the 2010s

* Finite Blocklength Approximations
 Age of Information
WHY?
TSN
* URLLC
* Edge Computing



EEEEEEEEE

Networked Cyber-Physical Systems

Reality Sensors Wireless Access

Server

Actuators !

* From sensing applications to closed-loop control
« Dependability becomes the focus (latency & reliability)
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URLLC: Application Fields

« Various application fields according to 3GPP:
* Rail-bound mass transit
* Building automation
« Factory of the future / industrial automation
« Smart living / smarty city
* Electric power distribution & power generation

* In addition:
« Support for autonomous devices (cars, drones, robots)

¢ Human-in-the-loop applications (AR / cognitive
assistance)

3GPP, TR22.804 v1.0.0, December 2017
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Range of Factory Automation Requirements

* Field-Level Control
* Cycletime: <10 ms
 Packet sizes: < 10 byte o
* Reliability: > 1-10-% 10

[H(f.)| [dB]

* Inter-PLC Communication: ey
* Cycletime: < 50 ms
* Packet sizes: < 500 byte
* Reliability: > 1-10%

Why turn to wireless?
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Reality Check

10 years ago expectation that
* 5G would be driving digital transformation in automation through URLLC
« Ubiquitous deployment of edge computing driving XR
* TSN would have taken over the majority of field bus market

Today:
 No URLLC
« Edge computing deployed as Telco edge, data sovereignty as driver
« TSN has small share of field bus market (but growing)
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* Definitions
« Latency: The time taken from when a packet arrives at the transmitter until it is
successfully delivered to the receiver.
* Reliability: The ratio of successfully delivered packets to the total number of

transmitted packets. %

Transmitter Receiver
¢ URLLC Requirements [1]
Scenario Reliability Latency Requirement Packet Size
AR/VR 99.999% 1ms 200 Bytes
Remote driving 99.999% 3ms 1MB/s
Electric Power o
Distribution 99.9999% 3ms 100 Bytes
Industrial Automation 99.9999% 1ms 32 Bytes

[1] Z. Zhu et al., "Research and Analysis of URLLC Technology Based on Artificial Intelligence," in IEEE Communications Standards Magazine, vol. 5, no. 2, pp. 37-43, June 2021, doi:
10.1109/MCOMSTD.001.2000037.
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{5 Latency in 5G
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» Latency Components

Packet
Arrived
—
% T Queuing ITransmissionI Decoding I Feedback ]_ =,
| Delay Delay Delay Delay @
Base Station User Equipment
(9NB) (UE)

Latency of transmission cycle

» Best-case Latency

Slot Length Queueing Transmission | Decoding Feedback 1Cycle 4 Feedback 4 Repeated
[2] Cycle Cycle
1ms 2ms 1ms 570 us 1ms 457 ms 18.28 ms 7.57 ms
0.5ms 1ms 500 us 357 us 500 ps 2.357 ms 9.428 ms 3.857 ms
125 us 250 us 125 us 178.5 us 125 us 0.679 ms 2.716 ms 1.054 ms

[2] “NR; Physical Layer Procedures for Data,” 3GPP, TS 38.214, 03 2023, version 17.5.0.
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Lo

DL slots
1 slot length in numerology 2 Feedk|>ack= 1.8 us - UL slots
— e
\ v J\. N J \ N JR{ J |
Tx= 250 us Decoding= 161 us Tx Decoding Feedback
\ A J

Y Y
Initial Transmission 1 Retransmission

* Tinitial Tx+ 1 ReTx can be only provided with numerology 2 within 1 ms
* However, numerology 2 is not mandatory
* Device chipset manufacturers do not realize this URLLC feature
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Ubiquitous provisioning of CPS through mobile networks

Last decade: Pull towards compute, latency & reliability
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Key Goals of 6G Cyber-Physical Networking

Convergence

E2E
Technology E2E Security
Integration

Scalable/Flexible
Predictability Vertical
Interfacing

» Convergence among different technologies to enable CPS applications

» Scalability of communication and compute infrastructure to support CPS
applications

Sharma et al. “Towards Deterministic Communications in 6G Networks: State of the Art, Open Challenges and the Way Forward”, IEEE Access 2024.
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Dependable Time-Critical Communication

* Dependable communication

* Quantitatively ascertain the delivery of required service performance for the communication that are agreed
* Identity upfront when these levels cannot be reached!

« Comprises several steps
1. Clarity on required and agreed service performance
2. Monitoring and prediction of delivered service performance
3. Automated service assurance
4. Feedback on service delivery to the application domain
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Architecture Outline

Local NW

@
ﬁ

Devices / ‘ ‘ Access sites ‘ ‘ Distributed sites

‘ National sites H Global sites

Management, Q\rchestrat’on, Monetization
e T N

Access, Mobility, N~ 5 ‘ork applications

Cloud infrastructure, Data pipeline
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Towards Predictability and Adaptation

Edge
Resource

Wireless Domain (1))

R \

Mobile
Network Backbone

R /\\ ,\//\/\ s Alternative Approach: Predict
I \/ ____________ g — \ E work KBUERATHARRERASHL SEAtIC
__________________________________________________________________________________ R < fram applications,
_____________________________________________________________________________________________________________ translatﬂedfwintilto fare footprint in the
- infrastructure
0 Tlme[rr::] 20 30 40 :
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DETERMINISTIC6G

montimage BzR

Industrial application players
k bringing 6G visionary use cases)

[ o N
Z
ERICSSON orange
&

Cumucore

Key industrial players in
k 6G research and development J

g:::’n‘::;ty S tucgan Key university and
research institutes at the
==gaL forefront for 6G
=== SILICON AUSTRIA LABS fundamental research )

[N

Leadership:
Ericsson GmbH & 5
KTH Stockholm

= Jan 2023 -Jun
2025 (30 months)

€ 58M€

https://deterministic6g.eu/
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Introduction

P(Z| X = x)
— P2

gc 0.20
= z
A Application =
v Q0
Performance Adaptation g 0.10
N, 0.00
) W / 4 ¥

2

\\.,
T\ _

Predicting QoS KPls such as end-to-end delay in advance

® Enables proactive adaptation
® Probabilistic guarantees on end-to-end performance e.g. 99.999% reliable

Performance (denoted by r.v. Z): data rate or delay
Observations/conditions (denoted by r.v. X)

0.0 5.0 10.0 15.0 20.0 25.0

Perf. metric




Distribution of performance for L time steps in future, given all observations until n
'D(Zn+L | XO:n — XO:n)

we call forecast distribution.
® As L — oo, for any system, P(Z,.; | Xo.n = X0:n) = P(Zns1)

0.30 P(Zn | Xo:n = XO:n)
> P(Zn+5 | XO:n — XO:n)
E 0.20 —P(Zn+10 | Xo:n = XO:n)
3 _ P(Z)
o)
- N
a

0.00

0.0 50 10.0 150 20.0 25.0
Perf. metric
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Title Research Field Year Predictability Measure
Are US stock index returns predictable? Finance 2013 Autocorrelation
Evidence from automatic autocorrelation based
tests
Model-free quantification of time-series Time Series Fore- 2014 Permutation Entropy
predictability casting
On the predictability of infectious disease Epidemiology 2019 Permutation Entropy
outbreaks
Limits of Predictability in Human Mobility Human Mobility 2010 Entropy Measures
Limits of Predictability for Large-Scale Urban Transportation 2014 Entropy (Fano's inequality)
Veehicular Mobility
On the Limits of Predictability in Real-World Communication 2015 Entropy (Fano's inequality)
Radio Spectrum State Dynamics Networks
Predictability and Information Theory: Measures Atmospheric  Sci- 2004 Predictive Information, Mu-
of Predictability ences tual Information, etc

Table 1: Summary of Related Works on Predictability Measures



. 0.20 P(Zpet | X = X)) _ 0.20 P(Znit | X = x)
= — P(Z) = — P(Z)
® 0.10 = 0.10
o o
o o

0.00 0.00

0.0 5.0 10.0 15.0 20.0 25.0 0.0 5.0 10.0 15.0 20.0 25.0
Perf. metric Perf. metric

System |: Unpredictable System Il: Predictable?

Idea: The system is unpredictable if consideration of the observations makes no difference in

the forecast distribution.

Mostafavi et al. “Predictability of Performance in Communication Networks under Markovian Dynamics,” IEEE Trans. VT, 2025.
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Definition: A system is unpredictable if
Pr(Zn—I—L|XO:n — XO:n) — Pr(Zn—I—L): (1)

when the future state Z,; is statistically independent of the observations xj.,.

Predictability is a combined property of the system and the observations.

[1]  T. DelSole,
Predictability and Information Theory. Part |I: Measures of Predictability,
Journal of the Atmospheric Sciences, vol. 61, no. 20, Oct. 2004.

[2] T. DelSole and M. K. Tippett,
Predictability: Recent insights from information theory,
Reviews of Geophysics, vol. 45, no. 4, Dec. 2007.

6/15



Cont.: Predictability measure is defined as the total variation distance between the forecast and
marginal distributions as

Dn(L) — |Pr(Zn+L|XO:n — XO:n) — Pr(Zn—|—L)|TV- (2)

Total variation distance example

For pmfs p and g, total Variation distance (TV) is a statistical metric distance defined by

TV(p, ) i= sup |p(A4) — q(A)| = 5 Y_ Iple) — al2)] )
< zeZ
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System Model

Discrete time system with time n

Subsystem m with Markov chain conditions: xim
e P(x,y) =Pr(Xpz1 =y | Xo = x)

Transition probability from state x to state y.

e | step state transition probability PL(x, y).
o Plix,y) = n(y) as L — oo.

Observability defects:

® Delayed observations, partial observations,
aggregated states e.g. O, = X,_4

Z,(71) e Z,(7/V/)
Subsystem 1 oo Subsystem M
Xn | X
s On oz

Figure 1: Multi-hop communication system model with observable
measures being conditions and performance.



Predictability Analysis

Theorem 1: Predictability of a Markov-modulated process Z, with Markov chain probabilities {P, 7t} and
posterior distributions r,(z):

Z[ (x,y) — 7(y))r,(2)].

zEZ yeX

Lemma: (Subadditivity of Predictability) The predictability of independent tandem multi-hop systems, is
upper-bounded via the sum of predictability of each hop as

M
<) D)

m=1
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Goals

® Assess predictability under conditions of imperfect observations.
® Determine how the randomness of the condition transitions influences predictability.
® Derive solutions for the predictability of sojourn time in Geo/Geo/1/K queues.

Geo/Geo/1/K queue

Performance metric: the sojourn time Z,

State: system size X,

with p and A as service and arrival probabilities.

1—A1—p) o 1=p(l—4)

pl—=4)  w@—=2) p(l-=2)

Figure 2: Geo/Geo/1 Markov chain states and transition probabilities
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Numerical Evaluations
A Geo/Geo/1/K system with y = 0.5, p = 0.85, and K = 128.

05 — — Analysis distributions | |
e Marginal distribution
| x=1
0.4 . : :
| \ —+— Exact x = 3x,p = 0.85
z | —A— Exact = = 3x,p = 0.75
:?; 0.3 ml b —»—Exact x =9x,p =085 |4
'8 \ —B— Exact x = 9x,p =0.75
& 0.2 8y . —»— Approx z = 9yx,p = 0.85
é —3 Approx z =9x,p=0.75 |
E —%— Exact z = 15x,p = 0.85
0.1 b _‘é —6— Exact x = 15x,p = 0.75
~— _ E —¥— Approx z = 15y, p = 0.85 1
0 —— —O~ Approx z = 15x,p = 0.75
20 25 30 35
Sojourn Time Z
>02 — — Analysis distributions | |
é Marginal distribution
£ 2000
201 1 :
C% x=16 — " o Lead Time
~_ ~ x=48— _ x=64 _
~N T~ — =" — _ . i . . -
0= == : = Figure 4. Exact and approximate predictability
0 20 40 60 80 100 i
Sojourn Time Z evaluations

Figure 3: Posterior (analysis) and prior (marginal) distributions 12/15
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u=04 p=038 p=04

——> Queue 1

Queue 2

Queue 3

X

-
> 14

I

!
+
X

Geo/Geo/1 queues with A = 0.34.
UB: Subadditivity of Predictability.

Curves that extend further to the right
represent higher predictability.

out

Predictability

o
o0

e
o

<
~

o
)

—A— Exact 2 = [10x™", 10, 10x®)]
—/A~ UB z = [10xV, 10x®, 10x®)]

- —6— Exact z = [10xY), —, —]
—=— Exact z = [—, 10y, —]
—— Exact z = [—, —, 10x*]
i —O- UB z = [10xY, —, -]
—3 UB z = [—,10x?®, -]
0 500 1000 500
Lead Time

2000
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Delay Prediction Problem

« Focus on a single wireless link (for the beginning)

* Delay is a stochastic metric of a queuing system

delay

»
»

=

Start Node ———————> (O———>| EndNode

\\DA

Wireless Link

 We are interested in a prediction of delay over some time horizon -> requires a stochastic
characterization of the system delay over time horizon given current conditions!
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Models of
Stochastic influence

Centred around average

—> Queueing Theory delay

l

Age of Information

Focused on average
information freshness

Analytical
approaches/
Machinery

Model-driven
approaches

Stochastic Focused on Stochastic
— Network Calculus delay bounds

v
Accurate Delay
Distribution Model
for Wireless
[ Communications
A

Gaussian Mixture Captures only

—> h
Models average behaviour

Probabilistic
Classifiers

Data-driven
approaches

Extreme Value Captures both average

—_—> =
Mixture Models and tail behaviours
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Model-driven Approach Realistic?

Start Node o—» End Node

Wireless Link \

B T ClEurog I RLCBuffer gNB
- Loy

MAC multiplexing
; A4
[ . .
Scheduler  ---—---> Modulation and Coding

A
T HARQ
g =
UE | i HARQ
+
Modulation and Coding
A
MAC multiplexing
A A
LCBuffer [T
Downlink Uplink

* Predictability is needed for real systems -> Cannot be captured by model-driven approaches.



wsy  State-of-the-art: Data-driven Delay Prediction

Use cases and Techniques Maturity & Specialization

Statistical
frameworks

Unsupervised
ML

Classical ML

Temporal
models

- Simple time-series prediction - Mature as baselines
« ARIMA,SARIMA, etc - Effective for simple trends
- Struggles with non-linearity

- Feature engineering and Anomaly - Preprocessing step
detection - Not used for direct forecasting
« PCA, Autoencoders, K-means

« Model non-linear relationships and  + Mature & strong baselines

classification of KPI into bins - Interpretable & efficient
 Regression, SVM combined with - Limited for non-sequential
various boosting dynamics

+ Sequence modeling of delay using + Mature & widely adopted
historical KPI data « Captures temporal dependencies
« RNN, LSTM, GRU, Transformer - Backbone of delay prediction
- Limited Interpretability and
extreme, data and compute
reatlirements

Moreira et al. [2020]
Lv et al. [2025],

Han et al.[2022]

Khatouni et al. [2019],
Flinta et al. [2020],
Moreira et al [2020].
Ahmad et al [2021],

Barmpounakis et al. [2021],
Mostafavi et al. [2025],
Dang et al. [2023],

Kai et al. [2024],

Zhou et al. [2024],
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Data-Driven Approach

« Collect data from the system!

* Interpret the problem definition as conditional density estimation problem : p(Y|X = x) =

P(Y|X = x)
« Requirement: Fit a parametric density function pg with parameter 6 to the conditional data
set

p(Y|X)
p(Y|X)

™
S

2 5 8 Yims] 2 5 8 Ylms|
Leverage Mixture Models!
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Mixture Density Networks (MDN)

 How to find the parameters based on the conditions?
* Use a neutral network h,, to map X to 8,i.e.0; = h,(x;)

00

000000
0.
p(Y|X)

- 000000

()

Through neural network training the conditional likelihood of the i.i.d samples
{(x1,¥1), (x2,¥2) - (xy, ya)} is Maximized and @, = o (Y > 71X;)
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Extreme Value Theory Mixture Models

¢ Remaining open issue: How to devise the mixture, i.e. how many centers (random variables)
and which ones?

* Choice heavily influenced by tail behavior:

_ N _JGMM y<u
Bt*hw(xt) pﬂt(Y|xt)_ {GPD y>u Sﬁn’t :Iaat (Y>T)

Neural Network

Xt —>

Paremetric PDF

=l
a)

& S
— | )
u Y

Mostafavi et al. “Data-Driven End-to-End Delay Violation Probability Prediction with Extreme Value Mixture Models,” IEEE/ACM SEC 2021.
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A Synthetic (Extreme) Evaluation Example

s s
2 2z
Queue 1 E Queue 2 E Queue 3 10°
% %
& & , "o
Compute Down-link O—> o 107
: ) B
(53 f [ = 107
1.2 3 1 1 B
predictor 1 {qg,q3,q3} 1 1 : "%
. S el
) s . o raining data 64 samples
0 {5, %} ! & Test data 552520 samples
5 R ‘S 101 —— EMM prediction
¢ {3} = —— GMM prediction
P2 (predictor3) ' 1010 £
) "0 13 16 19 n 5 B 3l
©1 Latency [log]
* 3-hop queueing system, system state Choice of centers plays huge role!

characterized by queue length

 Gamma-distributed service
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Evaluation Example Cont.

Does adding Gaussian centers help?

—a&— EMM 2 centers
—®— GMM 3 centers
—%#— GMM 9 centers
—l— GMM 15 centers

Error [log]
-

b

o2 1073 10~ 10-5
Quantile [log]

Error [log]

Does leveraging more data help?

—@— EMM lk
—— EMM 5k
—&— EMM 25k
—*— GMM 1k
——
- —

=

GMM 5k
GMM 25k
—&— GMM 50k

nd

GMM 100k _

1073 10~ 1075
Quantile [log]
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Indoor Testbed

Container-based cloud and radio testbed

- 12x servers

- PTP clock synchronized

- 24xradios
- 10x Software-Defined Radios (SDRs)
- 10x 5G Advantech routers as UE
- Ericsson private 5G - 4x radio dots

- 10 TB storage

- Block and object store

Software framework focus: Automation and Reproducibility

VINNOVA

STIFTELSEN fsr STRATEGISK FORSKNING

github.com/KTH-EXPECA


https://expeca.proj.kth.se/

EEEEEEEEE

Methodology

* Measurements taken on COTS and OAI 5G setups through EDAF

« Latencies (UL, DL and RTT) measured between the end node and the edge server via IRTT
* UE position and RSRP measured for the COTS 5G setup

« MCS observed in the OAI 5G setup

‘Uplink- »
[ server |

( end-nodee—e nrUE 0))) (((0 gNodeB &—e 5G core e— d |
/ _ node

< Downlink

S. Mostafavi et al., "EDAF: An End-to-End Delay Analytics Framework for 5G and Beyond Networks”, IEEE Infocom Workshop. 2024.



s

Ly,
FKTHY

VETENSKAP
<8, OCH KONST %%

B ofR

Latency Prediction COTS 5G

MDN

Gaussian Mixture Model (GMM) and
Gaussian Mixture Extreme Value
Model (GMEVM)

Neural Network

4 hidden layers ([10, 50, 50, 401])), 15
Gaussian centers

Training samples

4M samples (66 min), 80k (17 min) and 5k
(5 min)

Platform (OS,
hardware)

Intel(R) Core(TM) i9-10980XE CPU @ 3.00GH,
125GB RAM, 28 cores assigned

Tail probability

10° ¢

—
3
W

—_
9
IS

_.
9
W

—
bt
o)}

—o— measurements 4M samples

——— GMEVM 80k samples
GMEVM 5k samples

—— GMM 80k samples

——— GMM 5k samples

10

15 20

Link delay [ms]

GMEVM provides better predictions than GMM

Mostafavi et al. “Data-Driven Latency Probability Prediction for Wireless Networks: Focusing on Tail Probabilities,” IEEE Globecom 2023.
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10° ¢

107" |

~
<
(')

Tail probability

1073 ¢

meas. MCS=
meas. MCS=5
meas. MCS=7

pred. GMEVM -

pred. GMM

20 30

Link delay [ms]

* Less clear situation for SDR 5G ... but good fit in both cases.



Temporal Modeling T
Pe, ',” \\_/ ”\\/1'2,na0'2,n7w2,n.
Probabilistic data-driven prediction .

Mixture density networks (MDN)

W Useful predictions, uncertainty included

Use SOTA in time-series forecasting Manage data dimensions
RNNs, LSTMs, Transformers (network insights & traffic properties)

Enable large-scale, temporal predictions Tolamizaitam tadimioes fom Lvs

O O

. Best tOf)(ljS to cz(ajptur.e Compactly representing
eémporal depenaencies high-dimensional, heterogeneous data

Fine Tuning is fun for all!

Encoding

[34389, 13932, 278, 318, 1257, 329, 477, @]
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System Description

S

Periodic packets on 5G uplink (T,, By) a R "
G -

Packet n's latency random variable Y, |

Key sources of packet latency include: "

- Channel-Induced Delays:
- HARQ retransmissions, RLC retransmissions if HARQ repeatedly fails

- Scheduling-Induced Delays:
- Packets may be queued if they arrive at times unfriendly to the 5G TDD pattern or if resources are limited.
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Xp—H+1 .- o Youpoot M
\ Y \

~ ~
~ 3 V4 ~
i

»
=

Previous packets' delay contexts Future packets' delay distributions

Inputs: ( H) packet delay context vectors ( x,):

- Traffic properties: packet size, periodicity, ...
- Network conditions: CQI, SINR, ...

- Retransmission counters: HARQ retx and RLC retx

Objective: Predict the delay distributions for all L future packets: Y, , ..., Y i1
Historical data reveals trends or patterns beyond current state (x,).

Capture the relationships between previous observations and future delays.
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Prediction Approach

(1) Tokenization (2) LSTM or (3) Parametric

Efficient temporal learning Transformer Delay Density
Transfer learning

Fixed-size tokens (S) Parameters (V)

Temporal Deep-Learning

[U] HxS Network \[6] Lxv Hin,O1n, W2n

/ ./ % H2n,02n,W2n
Delay Context Tokenizer Parametric Distribution Po, / \ ’ '
e S —
(X]a T l Yn
I \ [ Y
1 X1 Xy Pyn / - Pyn+L—1’ \
/ S / S
Previous packets' delay contexts Future packets' delay distributions

Mostafavi et al “Probabilistic Delay Forecasting for in 5G using Recurrent and Attention-based Architectures”, ArXiv 2025.
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Co,hg ..............................
; v cu,hy

Wogi —>( £ : pAD —>»( f

x,,,xlm by T ch—A—ly hpa
e paD —»( £

e /l‘:?’h? = m/‘QCHVQ, hp.s

Uy > £ e - PAD > :/ f —> hH+L—1

[Ulaxs H]Lxs

Recurrent Model

RNN or LSTM
Simple, but fails at longer dependencies

Temporal Deep Learning Methods

H]gxs ~ FeedForvard  —[Q(] ¢
CAN ? T 1
g | Feed Forward —>  Cross-Attention =
S ) £ o
B )
‘ Multi-Head Masked Multi-Head
Self-Attention Self-Attention
Positional Positional
Encoding Encoding
[U]HXS [Q(O)]Lxs

Attention-Based Model

Transformer
Can learn arbitrary far dependencies



Dataset Creation and Training

A traffic generator runs to capture packet-level context vectors and delays.

Each sample is a packet record containing

N

- A *history window” (H past packets) D = {(X'rm Yy « - - s ym+L_1)} ™

- The true delay values for the following L packets.

The model optimizes a negative log-likelihood (NLL) loss from

- Predicted delay distributions and the true delays N L-1
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= Evaluation

Data collection:

- Openairinterface 5G on ExPECA
- EDAF 2.0, collecting per packet in addition to the delay:

Packet size (continuous)

Inter-arrival time (continuous)

Packet arrival slot (discrete)

MCS index (discrete)

HARQ retransmission count (discrete)
RLC retransmission count (discrete)

Experiments:
A)  Single packet inter-arrival time: 50ms, and size: 200B
B) Packet size 100B with multiple inter-arrival times:
10ms, 20ms, 50ms, 100ms

Training and inference:

- Pytorch implementation (integrates with EDAF)
- Dell Server with Nvidia L4 GPU
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Benchmarks

Single-Step Models (SOTA)
- MLP (37k param.)

Fully connected feed-forward network
Outputs a single delay prediction (of all future packets)

- LSTM-SS (33k param.)

Incorporates past sequence information using a recurrent (LSTM) encoder
Outputs a single delay prediction similar to MLP

Multi-Step Models (Our proposed approaches)
- LSTM (33k param.)

Recurrent architecture autoregresses over future packets
Generates delay distribution predictions for multiple upcoming packets

- Transformer (78k param.)

Uses self-attention to process the history window
Employs an encoder-decoder structure for multi-step forecasting

Packet Delay [ms]

Packet Delay [ms]

20 1

—— Delay History

~——— Ground Truth
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—75 -50 —25

—100

T
5 50 75 100
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MLP 5k, H:1, L:100

(54
0
!

%]
=
1

[S)
N
1

N
%)
1

[
=1
1

%
1

=N
1

—— Delay History
~——— Ground Truth
===- Prediction Dist. Mean

T T T T
-100 -75 =50 —23 0 25 50 75 100
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Transformer 5k, H:100, L:100




g

Sy,
ZKTHY

VETENSKAP
32 OCH KONST 9%

e of®

Models Accuracy Analysis

Standardized NLL

1.5

1.0

0.5 4

0.0

—@— MLP /.//‘
—— LSTM

—A— LSTM-SS /‘//A
—@— Transformer

o

20 40 60 80 100
Prediction Horizon (L)

.____,,/""'_— —@— MLP

—— LSTM
—A— LSTM-SS
—@— Transformer

— =

T T T T T

20 40 60 80 100
Prediction Horizon (L)

Comparison of model accuracy across different prediction
horizons. All models were trained on 5k samples exp B
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Models Complexity Analysis

0.010 A
MLP L=50 E —@— MLP Parallel

. LSTM L=50 2 0.008 | —#- LSTM Parallel
E LSTM-SS L=50 g —— Transformer Parallel
= Transformer L=50 “ 0,006 - —@— MLP AutoRegressive
(] (4] .
E MLP L=100 o —— LSTM AutoRegressive
‘_g LSTM L=100 .g 0.004 4 —&— Transformer AutoRegressive
g - LSTM-SS L=100 ‘éo
» - Transformer L=100 ‘= 0.002 A

~—~aoo 3

—9 5 o000 | B—@— - ]

T T T T T

2 4 6 8 10 20 40 60 80 100
Training Size [x1000 samples] Prediction Horizon (L)
Comparison of model accuracy across Training times for H:100, L:100 and

training dataset size, exp B different models
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Outline

Introduction + Motivation
Predictability of Communication Systems
From Theory to Practical Latency Prediction

Conclusions & Future Work
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Conclusions

Cellular network infrastructures today are not the backbone for CPS deployment

6G aims at enabling the cyber-physical continuum

One direction in enabling it:
* Make latency evolution more transparent along the entire ‘loop’
* ldentify when degradations occur, harmonize with application
» Performance prediction becomes key element!

Decompose into predictability and practical prediction
» Theoretical formulation of predictability and insights
 Architectures for probabilistic latency prediction



