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Cyber-Physical Networking: Origins

Reality Sensors Wireless Access Server

Autonomous monitoring & metering purpose

« End of 90s: First research on “sensor networks”

« Mid 2000: First standards (802.15.4, 6LowPAN)

« ~2010: Picked up by cellular networking industry (M2M business)
=» Massive machine-type communications




Critical Cyber-Physical Networking

Reality Sensors Wireless Access Server

Actuators !

* Closed-loop control (driven by autonomy trend)
« Dependability becomes the focus
« Some early research around 2000, fell dormant afterwards till 2010




Meanwhile in the Control Community ...
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Objective of controller: Stability of the system (i.e. minimize
the error to zero or bound the error to a small value)




Networked Control System (NCS)

* In practice, sensor, controller and actuator are closed over
a shared wireless/wired network.

* Network parameters can influence stability:
* Network-induced delay
 Packet drops
 Multiple packet transmissions
« Sampling interval

 NCS is a theoretical model to study this impact
 Focus on network-induced delay and packet drops




Status Quo around 2010

« Large body of research on sensor networks

« Established standards like 802.15.4, work in the IETF,
direction generally captured as Internet of Things (loT)

« Sensor networking community started to move on towards
application

« BUT: No significant commercial uptake
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Communication at Finite Blocklength

« Shannon capacity used for principle design of networks

Cisr = log, (1 + ) [bits / channel use]

 Low latencies = Shannon capacity inappropriate
« Assumes infinitely long coding words

« Tight finite blocklength approximation:
repr, ~ CIpr, — \/g - Q1 (¢) [bits / channel use]

V. Channel dispersion, » : blocklength, ¢ : block error rate

Y. Polyanskiy, H. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,”
IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307— 2359, May 2010.




Communication at Finite Blocklength

Tight finite blocklength approximation:
repr, ~ Cipl, — \/% - Q1 (¢) [bits / channel use]

V. Channel dispersion, n : blocklength, ¢ : block error rate

* In other words, the supportable rate is a Gaussian R.V. under
finite blocklength, and so

e~ Q ((CIBL — TFBL)\/§>

« Technically, for a given channel V (dispersion) must be
obtained

« This Gaussian approximation is tight for large ranges of n!
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Age-of-Information

o If a packet 7 generated at ¢; is delivered at t;, then

A(t) =t — max{t; : t; < t}.
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Figure: Sample path of Aol (right) at the receiver.




Age-of-Information
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@ For small values of p, Aol is high because of the large
inter-arrival times, while for high values of p, Aol is high
because of the increased queueing delay.

@ While the average Aol is minimized at p = 0.53, delay is
minimum when p is close to 0.

@ On the other hand, the throughput, i.e., the number of
packets received per second at the receiver, is maximized
when p approaches 1.




Pre-URLLC: Latency Characterization
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Source: Ericsson Technology Review, 1-2017.




Release 16: URLLC

Realize major KPIs of industrial use cases:
* Gbps bandwidth

« <1ms latency

* 99.999% + reliability

» Referred to as ultra-reliable low latency communications
(URLLC)




5G URLLC Key Concepts

Three main technical areas

Low latency through short transmissions (new frame
structure, referred to as NR), pipelined processing, and
centralized scheduling

Reliability through diversity, and predictable interference
Availability through multi-connectivity & multi-antenna
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URLLC: Optimized Framing & Scheduling
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FIGURE 3. Packet and frame structure for URLLC: a) packet structure; b) frame
structure; ¢) supported numerologies for 5G NR.




URLLC Reliability: Coding, Diversity, HARQ

Relaxed latency req.

Retransmission over longer period
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URLLC: Application Fields

« Various application fields according to 3GPP:
* Rail-bound mass transit
* Building automation
« Factory of the future / industrial automation
« Smart living / smarty city
» Electric power distribution & power generation

* In addition:
« Support for autonomous devices (cars, drones, robots)
* Human-in-the-loop applications (AR / cognitive assistance)

3GPP, TR22.804 v1.0.0, December 2017




The Rise of Edge Computing

Cloud Centers

Mobile
Networks

Internet
Backbone

Mobile
Networks

Deploy compute closer to the application ends.
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Fundamental Driver: Latency
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Depending on workload, migrating from cloud to edge computing
reduces round-trip latencies by 50 — 100 ms, or more.

Chen et al. “An empirical study of latency in an emerging class of edge computing
applications for wearable cognitive assistance,” [EEE SEC 2017. 21

https://publications.computer.org/computer-magazine/2017/01/17/wearable-cognitive-assistance-pingpong-assistant/




Status Quo around 2020

« Explosion of the ‘low latency’ area

 Fundamentally, much better understood through scientific
breakthroughs

« Substantial technology development through various
standards and industrial alliances

« Significant commercial uptake of IoT (several wide-area
low power standards like LTE-M, SigFox etc.) -> Driven by
cloud computing!
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Status Quo in Cyber-Physical Networking

IEEE TSN standardization
IETF DetNet

2012 2014 2016 2018 2020 2022 2024
‘ 3GPP 5G (from Relea e 15)

Industry 4.0 development ndustry 50
OPC UA FX and TSN integra

l tii
Technology Islands: TSN, DetNet, 5G, OPC UA, MEC

— Independently evolving, limited interworking
— Slow commercial uptake, some success in niche domains
— Conceptually: Eliminate uncertainty as much as possible!




Cyber-Physical Networking (CPN)

Reality

o~ Sensor Stream \
de
e(t)dt +ky o

Feedback

Compute and Communications for CPS = CPN!
Domains: Automation, Robotics, AR, VR, Exoscelotons etc.
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« Ubiquitous provisioning of CPS through mobile networks
Last decade: Pull towards compute, latency & reliability




Towards Predictability and Adaptation
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Key Goals of 6G Cyber-Physical Networking

Convergence

E2E
Technology E2E Security
Integration

Scalable/Flexible
Predictability Vertical
Interfacing

« Convergence among different technologies and
infrastructures to enable CPS applications

« Scalability of communication and compute infrastructure to

support CPS applications

Sharma et al. “Towards Deterministic Communications in 6G Networks: State of the Art, Open
Challenges and the Way Forward”, arXiv preprint arXiv:2304.01299
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