
The DETERMINISTIC6G project has received funding from the European  
Union’s Horizon Europe research and innovation programme under  
grant agreement no 1010965604. 
      

Digest on Second 
6GDetCom Simulator 
& Emulator Release 
D4.4 

 

 

 

 

 

 

 

 



Digest on Second 6GDetCom Simulator & Emulator Release 
 
Grant agreement number:  101096504  

Project title:  Deterministic E2E communication with 6G 

Project acronym: DETERMINISTIC6G 

Project website: 

Programme: 

 

Deterministic6g.eu 
EU JU SNS Phase 1  

Deliverable type:  Public Software Release 

Deliverable reference number: D4.4 

Contributing workpackages: WP4 

Dissemination level: PUBLIC 

Due date: 30-04-2025 

Actual submission date: 30-04-2025 

Responsible organization: USTUTT 

Editor(s): Lucas Haug 
Frank Dürr 

Version number: v1.0 

Status: Draft 
 

Short abstract: This deliverable describes the extensions of the simulator 
framework, which is used to validate the concepts that are 
developed in the project. It provides an overview of the 
enhancements since the first release and describes the design 
rationales behind these implementations. The core features of 
the second release of the simulation framework are: (1) an 
enhanced and more flexible architecture; (2) enhanced 
simulation models of time synchronization mechanisms; (3) 
simulation models for the Packet Delay Correction (PDC) 
mechanism; (4) network control plane interfaces to configure the 
network data plane supporting the simulation of dynamic 
scenarios. Besides the simulation framework, we also present 
two novel emulation frameworks: One framework allows to 
emulate the characteristic packet delay in existing TSN networks 
using Linux Qdiscs for converged 6G/TSN networks. The other 
framework enables the evaluation of security solutions for PTP-
based time synchronization.  

Keywords: 5G, 6G, software, validation, simulator, emulator, packet delay, 
processing delay, packet delay variation, dependable 
communication, TSN, PTP, time synchronization, gPTP, security 

 

Contributor(s): Lucas Haug (USTUTT) 
Frank Dürr (USTUTT) 
Simon Egger (USTUTT) 
Mahin Ahmed (SAL) 
James Gross (KTH) 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  1 

Samie Mostafavi (KTH) 
Gourav Prateek Sharma (KTH) 
Huu-Nghia Nguyen (MI) 
Edgardo Montes de Oca (MI) 
Marilet de Andrade Jardim (EAB) 
Oliver Höftberger (B&R) 
Emilio Trigili (SSSA) 

 

Reviewers: Marilet de Andrade Jardim 
Emilio Trigili 

Revision History  
v0.1 Initial Draft 

v0.2 First complete version for internal review. 

v0.3 Revised version for PMT review. 

v0.4 Revised version including PMT review comments. 

v1.0 Final version (submitted). 

 

  



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  2 

Disclaimer  
This work has been performed in the framework of the Horizon Europe project DETERMINISTIC6G co-

funded by the EU. This information reflects the consortium’s view, but the consortium is not liable for 

any use that may be made of any of the information contained therein. This deliverable has been 

submitted to the EU commission, but it has not been reviewed and it has not been accepted by the 

EU commission yet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  3 

 

Executive summary 
This digest provides an overview of our open-source validation software for converged 6G/TSN 

networks released as D4.4 “DETERMINISTIC6G DetCom simulator framework release 2”. It describes 

the additions and new main features added since the first release of the simulation framework in D4.1 

“DETERMINISTIC6G DetCom simulator framework release 1” [DET23-D41]. Even though title of D4.4 

only mentions the simulator framework, this second release consists of three main frameworks: the 

6GDetCom Simulator, the 6GDetCom Emulator, and the Secure PTP Emulation Framework. This digest 

is not intended as a programmer’s or user’s guide, but instead it gives an overview of the functionality 

and design rationales, as well as providing exemplary use-cases. A detailed description of the open-

source releases can be found in the corresponding GitHub repositories (see Table 1). Links to specific 

documentation sites are provided in this document wherever necessary. 

The core functionality of both, the 6GDetCom Simulator and 6GDetCom Emulator is the 

simulation/emulation of the characteristic Packet Delay (PD) of the virtual 6G TSN bridge (called 

DetCom node). The 6GDetCom Simulator already provides this functionality in the first release. This 

new release contains a refined and more flexible architecture as well as the option to replay delay 

traces instead of only histograms. Furthermore, we extend the simulator with the following additional 

features: 

1. A full time-synchronization model for converged 6G/TSN networks based on gPTP [IEEE 

802.1AS]; 

2. Simulation models for PDC, as described in Deliverable D2.3 [DET25-D23]; 

3. Two network control plane interfaces to support the simulation of dynamic scenarios: The 

first option adds a NETCONF [RFC6241] interface to the simulator, which allows for connecting 

an external TSN centralized network controller (CNC) to the simulated data plane. The other 

provides a direct scheduler interface within the simulator. These extensions allow for the 

simulation of adaptive schedules in scenarios with changing stream sets and dynamic PD 

distributions. 

To facilitate the validation of real applications under test, such as the exo-skeleton, we developed the 

6GDetCom Emulator as a second validation tool. Specifically, it can be used to analyze and evaluate 

the effect or characteristic 6G PD distributions onto real applications. The 6GDetCom Emulator is a 

Linux-based application, which delays packets passing through the emulator using characteristic 

5G/6G PD distributions from delay measurements captured in the Deterministic6G testbed [DET24-

D42].  

Finally, we provide a Mininet-based [Min2025] emulation framework for the validation of secure PTP 

time synchronization, which is used to monitor, detect and localize Time-Delay Attacks (TDA).  

  



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  4 

Contents 
Revision History ...................................................................................................................................... 1 

Disclaimer................................................................................................................................................ 2 

Executive summary ................................................................................................................................. 3 

1 Introduction .................................................................................................................................... 5 

1.1 Relation to Other Work Packages.......................................................................................... 5 

1.2 Objective of the Document ................................................................................................... 7 

1.3 Structure and Scope of the Document .................................................................................. 7 

2 6GDetCom Simulator Framework ................................................................................................... 8 

2.1 DetCom Node Architecture ................................................................................................... 8 

2.2 DelayReplayer ........................................................................................................................ 9 

2.3 Packet Delay Correction (PDC) ............................................................................................ 12 

2.3.1 PDC Using Histogram Manipulation ................................................................................ 12 

2.3.2 PDC Implementation in the Simulator Framework ......................................................... 13 

2.4 Time Synchronization .......................................................................................................... 15 

2.4.1 Additions to the INET framework.................................................................................... 16 

2.4.2 Additions to the 6GDetCom Simulator ........................................................................... 20 

2.5 Dynamic Scenarios ............................................................................................................... 21 

2.5.1 NETCONF Interface .......................................................................................................... 22 

2.5.2 Direct Scheduler Interface .............................................................................................. 30 

3 6GDetCom Emulator ..................................................................................................................... 36 

3.1 Architecture of the Network Delay Emulator ...................................................................... 36 

3.2 Evaluation of Delay Emulation Accuracy ............................................................................. 37 

4 Secure PTP Time Synchronization Emulation Framework ............................................................ 40 

4.1 Introduction ......................................................................................................................... 40 

4.2 Framework Description ....................................................................................................... 40 

4.2.1 Emulation Network ......................................................................................................... 40 

4.2.2 P4-based Programmable Transparent Clock ................................................................... 42 

4.2.3 INT Collector & TDA Detection ........................................................................................ 45 

5 Conclusion and Future Work ........................................................................................................ 47 

Reference .............................................................................................................................................. 48 

List of abbreviations .............................................................................................................................. 50 

 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  5 

1 Introduction 
This digest describes Deliverable D4.4, the second release of the 6GDetCom validation frameworks, 

including extensions and enhancements over the first release of the 6GDetCom Simulator [DET23-

D41] as well as two new emulation frameworks, namely the 6GDetCom Emulator and the emulator 

for the validation of secure PTP time synchronization. 

The purpose of this digest is to highlight the updates since the first simulator release, the features of 

the new emulation frameworks, as well as to provide an intuitive description of the design principles 

applied to support the explanation of the software releases. This document is not a comprehensive 

technical documentation, nor a user manual. A detailed software documentation, including source 

code explanations, class descriptions, example showcases, and configuration guidelines, is included 

within the software package itself. Where appropriate, this digest links to these parts of the 

repository. The complete software and related resources, such as container images and configuration 

files, are accessible through the project's GitHub repository, with an archived version available on 

Zenodo. Links to these resources are provided in Table 1. 

Component name License Link 

6GDetCom Simulator LGPL v3 GitHub: 
DETERMINISTIC6G/6GDetCom_Simulator 
Zenodo DOI: 
https://doi.org/10.5281/zenodo.10401976  

6GDetCom Emulator GPL v3 GitHub: 
DETERMINISTIC6G/6GDetCom_Emulator 
Zenodo DOI: 
https://doi.org/10.5281/zenodo.15305264  

PD Datasets Multiple GitHub: 
DETERMINISTIC6G/deterministic6g_data 
Zenodo DOI: 
https://doi.org/10.5281/zenodo.10405084  

NETCONF interface 
for INET 

LGPL v3 
and partially 
BSD-3-Clause 

GitHub: 
https://github.com/DETERMINISTIC6G/netconf-for-
inet  
Zenodo DOI: 
https://doi.org/10.5281/zenodo.15305259  

Secure PTP Timesync 
Emulator 

Apache 2, 
MIT 

GitHub: 
https://github.com/deterministic6g/ptp-in-mininet 
Zenodo DOI: 
https://doi.org/10.5281/zenodo.15305270  

Table 1: Overview over subcomponents of this deliverable. 

 

1.1 Relation to Other Work Packages  
Within the technical work packages of the DETERMINISTIC6G project, Deliverable D4.4 is part of WP4 

“6G deterministic communication validation framework”. The relation of WP4 to the other work 

packages of this project is depicted in Figure 1. D4.4 takes features and concepts from WP2 “6G centric 

enablers for deterministic communication services” and WP3 “6G convergence enablers for 

https://www.gnu.org/licenses/lgpl-3.0.html
https://github.com/DETERMINISTIC6G/6GDetCom_Simulator
https://doi.org/10.5281/zenodo.10401976
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/DETERMINISTIC6G/6GDetCom_Emulator
https://doi.org/10.5281/zenodo.15305264
https://github.com/DETERMINISTIC6G/deterministic6g_data?tab=readme-ov-file#license
https://github.com/DETERMINISTIC6G/deterministic6g_data
https://doi.org/10.5281/zenodo.10405084
https://www.gnu.org/licenses/lgpl-3.0.html
https://opensource.org/license/bsd-3-clause
https://github.com/DETERMINISTIC6G/netconf-for-inet
https://github.com/DETERMINISTIC6G/netconf-for-inet
https://doi.org/10.5281/zenodo.15305259
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/DETERMINISTIC6G/ptp-in-mininet/blob/main/LICENSE
https://github.com/deterministic6g/ptp-in-mininet
https://doi.org/10.5281/zenodo.15305270


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  6 

deterministic communication” and develops validation frameworks to validate these features and 

concepts through simulation and emulation models of these features. The validation is based on use-

cases defined in WP1 “Vision, architecture and system aspects for deterministic e2e communication 

with 6G”. 

 

Figure 1: Relation of WP4 to other work packages. 

In more detail, Deliverable D4.4 is tightly coupled with the following other deliverables: 

• D1.1 “DETERMINISTIC6G use cases and architecture principles” [DET23-D11] provides use 

cases and applications, such as the exo-skeleton, which will utilize the validation framework 

for validation.  

• D2.1 “First report on 6G centric enablers” [DET23-D21] introduces the concept of PDC. An 

implementation of PDC in the simulator is explained as part of this deliverable. 

• D2.2 “First Report on the time synchronization for E2E time awareness” [DET23-D22] 

describes the time-synchronization architecture, which we implement in the 6GDetCom 

Simulator as part of this deliverable. 

• D2.3 “Second report on 6G centric enablers” [DET25-D23] includes a validation analysis of PDC 

methods using WP4’s validation framework. 

• D2.4 “Report on the time synchronization for E2E time awareness” [DET25-D24] contains a 

description of time-synchronization architectures for converged 6G/TSN networks, which we 

simulate using our framework, as well as the validation results of these concepts. Results 

based on our emulator for the validation of secure PTP time synchronization are also provided 

in D2.4. 

• D3.1 “Report on 6G convergence enablers towards deterministic communication standards” 

[DET23-D31] and D3.4 “Optimized deterministic end-to-end schedules for dynamic systems” 

[DET24-D34] define end-to-end scheduling concepts that are simulated in the simulation 

framework. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  7 

• In D3.2 “Report on the Security Solutions” [DET23-D32], a security-by-design approach was 

introduced. This deliverable contains an emulation framework that implements this approach 

to secure End-to-End (E2E) time synchronization using PTP. 

• D4.1 “DETERMINISTIC6G DetCom simulator framework release 1” [DET23-D41] described the 

initial simulation framework release, which is extended in the second release of D4.4. 

• D4.2 “Latency measurement framework” [DET24-D42] and D4.3 “Latency measurement data 

and characterization of RAN latency from experimental trials” [DET25-D43] provide the 

essential latency measurement from experiments in a 5G/6G testbed that are utilized by the 

simulation and emulation framework to simulate and emulate the characteristic packet delay.    

1.2 Objective of the Document 
The major objective of WP4 is the development of tools and performing evaluations to validate the 

features and concepts developed in WP2 and WP3, based on use-cases from WP1. This deliverable 

focuses on the first part of the major objective: The development of tools. The objective of this 

document is to provide insights on how the recent developments of our software tools – the 

6GDetCom Simulator, 6GDetCom Emulator and Secure PTP Emulation Framework – enable this 

validation and evaluation of features and concepts. 

While the major contribution of this deliverable towards WP4’s objectives are the software tools (see 

Table 1), the purpose of this document is to complement the open-source code and documentation 

by providing a high-level description of design choices and functionality. Where necessary, exemplary 

showcases are provided to support the description of the features. A final validation of use-cases and 

concepts is scheduled for the upcoming deliverable D4.5 “Validation Results”. 

1.3 Structure and Scope of the Document  
The content of this digest is structured as follows: 

First, in Section 2, we present the extensions and enhancement of the 6GDetCom Simulator since the 

first release. We start this section with a description of an enhanced and more flexible architecture. 

This is followed by the description of newly added functionality, including the following: A 

DelayReplayer, allowing the replay of delay traces inside of the simulation, Simulation models for PDC, 

gPTP-based time synchronization, and two approaches for the evaluation of dynamic scenarios 

including network control plane features. 

In Section 3, we present our new 6GDetCom Emulator. We start this section with a description of the 

main feature – emulating the characteristic PD of a virtual 6G bridge – and a description of its Linux 

QDisc based architecture. Following that, we evaluate the performance and limitations of this 

emulation framework. 

In Section 4, we provide a technical description of a Mininet-based emulation framework for analyzing 

PTP-based time synchronization in converged 6G/TSN networks to monitor and detect Time-Delay 

Attacks (TDA).  

Finally, we provide a conclusion of this digest in Section 5 including an outlook into future work. 

  



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  8 

2 6GDetCom Simulator Framework 
In the first release of the 6GDetCom Simulator [DET23-D41], we proposed an OMNeT++ [OMN25] and 

INET [INE25] based simulator for simulating and evaluating TSN concepts in converged 6G/TSN 

networks. This second release is based on this first release and refines the initial architecture and 

provides additional functionality as described in the upcoming sections. 

2.1 DetCom Node Architecture 
The core component of the 6GDetCom Simulator is the so-called 6GDetCom node, which models a 

logical (wireless) 5G/6G TSN bridge. In our initial design to simulate the characteristic PD of a 

6GDetCom node, we extended the implementation of an INET TsnSwitch1 with a Delayer module to 

simulate the characteristic PD of logical 5G/6G TSN bridges. With the integration of new features into 

the simulator, such as PDC and Time Synchronization, it became obvious that the initial design of the 

6GDetCom node needs to be further enhanced to facilitate the integration of these and other new 

features. To this end, we implemented a more elaborate and flexible approach in the following. 

 

Figure 2: New architecture of the 6GDetCom node. 

Instead of implementing the DetCom2 node as a single TsnSwitch, we now implement the DetCom 

node as a combined module of multiple TsnTranslator3 (TT) modules. The example in Figure 2 contains 

 
1 https://doc.omnetpp.org/inet/api-current/neddoc/inet.node.tsn.TsnSwitch.html  
2 https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.devices.DetCom.html  
3 
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.devices.tsntranslator.TsnTranslator.
html  

https://doc.omnetpp.org/inet/api-current/neddoc/inet.node.tsn.TsnSwitch.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.devices.DetCom.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.devices.tsntranslator.TsnTranslator.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.devices.tsntranslator.TsnTranslator.html


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  9 

the structure of this new DetCom node (blue). It consists of one network-side TSN Translator (nwtt) 

and two device-side TSN Translators (dstt[0] and dstt[1]).  

Note: To stick with the naming convention and overcome the limitations of module naming in 

OMNeT++ and INET, the names of modules in Figure 2 and the following sections may deviate from 

the official names. For example, network-side TSN Translator typically named NW-TT is named nwtt 

within the software, DS-TTs are called dstt. And a TSN Translator is called TsnTranslator. To this end, 

the following sections always use italic formatting to denote a reference to the software naming. 

Inside of the DetCom node, each TT (dstt[0], dstt[1] and nwtt in Figure 2) serves the purpose of a half-

bridge, i.e. the ingress TT provides ingress TSN features, such as Per Stream Filtering and Policing 

(PSFP), and the egress TT provides egress TSN features, such as shaping mechanisms. To this end, 

every TT in our implementation extends an INET TsnSwitch already providing the necessary TSN 

features. 

Inside of the DetCom node, all TTs are connected to each other using a tt-interface (tt[0] and tt[1] 

inside of dstt[0] in Figure 2). For example, dstt[0] connects to nwtt using it’s tt-interface tt[0] and 

connects to dstt[1] using it’s tt-interface tt[1]. A tt-interface is based on the Ethernet interface of INET 

but modified to transmit frames between TTs without any delay (i.e. no transmission and no 

propagation delay). Instead, similar to our first release, the core of our simulation framework is the 

Delayer component, which simulates the characteristic packet delay of the 6G system. In the new 

architecture this Delayer component (purple) resides inside the bridging layer (orange) of each TT. The 

delay configuration works by setting the uplink and downlink delay separately for every dstt. As shown 

in Listing 1, the configuration can be achieved by loading delay histograms, by specifying a static delay, 

or by using a built-in close form distribution (see Deliverable D4.1 [DET23-D41] for more details about 

the different options to specify delay distributions, including also our delay histograms from real 

measurements in our 5G/6G testbed). 

 

Listing 1: Example delay configuration 

It is important to note, that the behavior of our simulated DetCom node did not change from a TSN 

perspective for the existing simulations. However, as previously mentioned, it lays the basis for the 

implementations explained in the next sections. 

2.2 DelayReplayer 
In our previous release, the only way to use the measurements was the usage of histograms. However, 

this approach has a few limitations. For example, the drawn delay values are independently identically 

distributed (i.i.d), which makes it hard to simulate the correlation between the delay of different TTs 

or to simulate slow fading effects of moving devices or an increased load on the network. To this end, 

*.histogramContainer.histograms = {uplink: "uplink.xml", downlink: "downlink.xml"} 
*.detCom.dstt[0].delayUplink = rngProvider("histogramContainer","uplink") 
*.detCom.dstt[0].delayDownlink = rngProvider("histogramContainer","downlink") 
*.detCom.dstt[1].delayUplink = 5ms 
*.detCom.dstt[1].delayDownlink = normal(5ms,1ms) 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  10 

we extend our simulation framework by a so-called DelayReplayer4, which allows to replay delay 

traces in two different modes: The first mode delays frames in the given order (cycle mode), the other 

delays frames based on timestamps (timestamped mode). 

The configuration of the DelayReplayer works similarly to the configuration of delay histograms, as 

shown in Listing 2. In addition to the configuration of the filename, an offset can be applied. The 

meaning of this offset is described in the following. 

 

Listing 2: Delay Replayer configuration. 

As mentioned above, the DelayReplayer supports two modes. The first mode, called cycle mode, 

requires a configuration file with one delay value per line. An example is given in Listing 3. In this 

mode, the delay values are picked in order, i.e., the first frame is delayed by the value given in the first 

line, the second frame is delayed by the value in the second line, and so on. An optional offset can be 

applied, this offset allows to start the cycle at a specific position in the file, e.g. 100 in the example 

above. 

 

Listing 3: DelayReplayer configuration in cycle mode. 

In the second mode, called timestamped mode, a file with two comma-separated values per line is 

required. The first value corresponds to a delay value, as before, and the second value corresponds to 

a timestamp. An example is given in Listing 4. In this case, if a frame arrives, the current simulation 

timestamp will be taken and the delay value of the closest smaller timestamp of the file will be taken. 

For example, for a frame arriving at time 17 𝑚𝑠, the next smaller delay value in the configuration is 

10.435072 𝑚𝑠, so a delay of 5.825536 𝑚𝑠 is selected. As before, an offset can be specified. In the 

example configuration above, a time of 5 𝑚𝑠 would be added to the current simulation time before 

selecting the correct delay from the file. 

 

Listing 4: DelayReplayer configuration in timestamp mode. 

 
4 
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.distribution.delayreplayer.DelayRepl
ayer.html  

*.delayreplayerContainer.delayreplayers = { 
uplink: {file: "trace_timestamp.csv", timestampOffset: 5ms}, 
downlink: {file: "trace_cycle.csv", offset: 100}} 

 
*.detCom.dstt[0].delayUplink = rngProvider("delayReplayerContainer","uplink") 
*.detCom.dstt[0].delayDownlink = rngProvider("delayReplayerContainer ","downlink") 

5.422592ms 
5.051648ms 
6.724608ms 
6.25408ms 
 

4.88064ms,0ms 
5.825536ms,10.435072ms 
4.457472ms,19.926272ms 
5.789696ms,30.438912ms 

https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.distribution.delayreplayer.DelayReplayer.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.distribution.delayreplayer.DelayReplayer.html


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  11 

Figure 3 shows the comparison of a histogram from the PD-Wireless-5G-1 dataset [HDM+23] on the 

top compared to the produced end-to-end packet delay of the simulation on the bottom using the 

raw measurement data of the same dataset to configure the DelayReplayer. This shows that the 

approach follows the delay traces and for a long-running simulation produces the same delay 

histograms. As expected, input and output histograms form a similar distribution, but as the 

simulation only covers a small timeframe of the whole dataset, they are not exactly the same. 

 
(a) Histogram of input uplink dataset 

 
(b) Histogram of input downlink dataset 

 
(c) Resulting uplink end-to-end delay using 

timestamp mode 

 
(d) Resulting downlink end-to-end delay using cycle 

mode 

Figure 3: Comparison of input dataset (top) and resulting end-to-end delays of the DelayReplayer (bottom) 
using the timestamp mode (left) and cycle mode (right). 

While the delay traces solve some problems introduced by histograms, they also have their own 

downsides. As the delay traces are not stateless (i.e., the current position in the delay file is stored), 

the same DelayReplayer key should not be used among multiple TTs. Instead, for every TT, the delay 

file needs to be loaded once, so a frame being delayed in one TT does not affect the delays of another 

TT. This increases the complexity of the simulation setup. Additionally, the delay trace files are usually 

bigger than their corresponding histograms leading to a greater memory footprint and simulation 

startup time. 

In summary, both approaches have their own use-cases. On the one hand, if i.i.d. delay values from a 

histogram are sufficient for a simulation, they are easier and faster to setup. Additionally, some 

datasets are only provided as histograms without having access to the raw measurement data. On the 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  12 

other hand, if the correlation of different distributions needs to be simulated or specific delay values 

should be mapped to specific timestamps in the simulation (e.g., when replaying delays from a 

captured history of delays), the DelayReplayer can be used to simulate these scenarios. 

2.3 Packet Delay Correction (PDC) 
In D2.1 “First report on 6G centric enablers” [DET23-D21] and D2.3 “Second report on 6G centric 

enablers” [DET25-D23], we present the approach of PDC. In summary, PDC allows to reduce the Packet 

Delay Variation (PDV) of a packet by utilizing the hold and forward buffering mechanism at the 

outgoing TT. As described in D2.1 and D2.3, there are multiple methods to implement PDC, for 

example the timestamp-based method and the virtual-timeslot-based method. Next, we describe the 

implementation of PDC in the simulator for both methods.  

In the timestamp-based method, the ingress point (DS-TT or NW-TT) attaches an ingress timestamp 𝑡𝑖 

to the packet. The egress point (another DS-TT or NW-TT) then generates an egress timestamp 𝑡𝑒 and 

uses both timestamps to generate a residence time 𝑡𝑟𝑒𝑠 = 𝑡𝑒 − 𝑡𝑖. The egress point then removes the 

ingress timestamp from the packet and holds the packet for time 𝑡ℎ𝑜𝑙𝑑 = 𝑝𝑑𝑐 − 𝑡𝑟𝑒𝑠 where 𝑝𝑑𝑐 refers 

to a predefined minimum packet delay. If 𝑝𝑑𝑐 is equal to the maximum packet delay 𝑝𝑑𝑚𝑎𝑥, all frames 

spent exactly 𝑝𝑑𝑚𝑎𝑥 inside of the 6GDetCom node. If, however, 𝑝𝑑𝑐 is smaller than 𝑝𝑑𝑚𝑎𝑥, the 

resulting Packet Delay Variation (PDV) is equal to the interval [𝑝𝑑𝑐, 𝑝𝑑𝑚𝑎𝑥]. 

The virtual-timeslot-based method works similarly to the timestamp-based method but instead of 

using precise timestamps it uses timeslots of a predefined size 𝑇𝑠𝑙𝑜𝑡 and encodes the ingress and 

egress times using an integer number uniquely specifying a timeslot. The egress TT then calculates the 

number of timeslots to hold the frame and forwards the frame within the following timeslot. This 

approach is able to achieve a PDV equal to 𝑇𝑠𝑙𝑜𝑡. 

In the following we present two approaches on how to use these PDC approaches in our simulation 

framework. The first approach works by modifying the input delay histograms of the simulator. The 

second approach is an actual implementation of PDC into the simulator. 

2.3.1 PDC Using Histogram Manipulation 
As mentioned above, our first approach to mimic the behavior of PDC works by modifying the input 

histograms. To achieve this, we provide a script histogram_manipulation.py together with our 

histogram datasets, which is used to modify histograms as if PDC were active. 

This script allows to take any input histogram and allows to specify a percentage 𝑝 of frames that 

should be delay-corrected, e.g., if a percentage of 𝑝 = 0.7 is chosen, that means the value of 𝑝𝑑𝑐 is 

calculated such that 70 % of the histogram has a delay shorter than 𝑝𝑑𝑐 and 30 % of the frames are 

contained in the interval [𝑝𝑑𝑐, 𝑝𝑑𝑚𝑎𝑥]. 

An example usage of this this tool is shown in Listing 5 and the corresponding result is shown in Figure 

4. As can be seen, the first 70 % of values are merged into a single bin (first orange bar) corresponding 

to the calculated 𝑝𝑑𝑐 value. 

 

Listing 5: Example usage of the histogram manipulator. 

$ python histogram_manipulation.py --hist "histogram.xml" --pdc 0.7 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  13 

 

Figure 4: Original input histogram (blue) and resulting output histogram (orange) for 70% PDC. 

This histogram modification approach is useful, when incorporating PDC into a scheduler which 

already supports delay histograms without requiring changes to the scheduler code. 

2.3.2 PDC Implementation in the Simulator Framework 
Additionally to the histogram manipulation method above, we also implement PDC as a functionality 

in the simulator. This allows for an easier setup and exploration of different PDC values without having 

to regenerate histograms as well as a support for PDC when using built-in probability density functions 

(like a normal distribution) instead of histograms. 

Timestamping 

Our PDC function in the simulator is focused on the timestamp-based approach. Thus, we extend our 

simulation framework with the timestamping mechanism explained above. All relevant components 

of this implementation are also shown in Figure 2. 

When a frame enters the DetCom node, the following happens in the incoming TT: The frame is 

received through the incoming eth-interface and is tagged with an internal ingressTimestamp tag 

containing the current ingress time.  Tags in OMNeT++ are only valid inside of the current module (i.e. 

the internal ingressTimestamp tag is only accessible inside the current TT). To this end, when the 

packet passes through the timestampingLayer5 inside of the bridging module, the timestampingLayer 

checks if the next hop of the packet is another TT. If this is the case, it ensures that the timeTagging6 

 
5 
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.DetComTimestamping
Layer.html  
6 
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.DetComTimeTagging.
html  

https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.DetComTimestampingLayer.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.DetComTimestampingLayer.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.DetComTimeTagging.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.DetComTimeTagging.html


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  14 

module will encode the ingressTimestamp into the frame, so it is accessible at the next TT. We omit 

the details of this process here, as this behavior is highly OMNeT++/INET specific. Note: As the delay 

of frames inside the current DetCom node architecture is solely based on our Delayer, the increased 

packet size does not influence the transmission time of the frame inside of the DetCom node. 

When the frame reaches the second (outgoing) TT, the timeTagging module removes the encoded 

timestamp from the frame and again adds the internal ingressTimestamp tag to the frame to make it 

available to other components inside of the current TT. As the frame reaches the timestampingLayer, 

the ingressTimestamp is used together with the current time to calculate the residence time 𝑡𝑟𝑒𝑠, 

which is then added as an internal residenceTime7 tag, which can be used by the following modules. 

Configuration 

The configuration of PDC works on a per-stream basis and is based on the streamIndentifier principle, 

which is also used in INET to enable PSFP and to map streams to PCP values. 

Listing 6 shows an example PDC configuration. It contains two streams. The PDC values of Stream 1 is 

chosen such that 70 % of the frames from the expected interval are corrected. Stream 2 is configured 

to correct 99.99 % of the streams. The jitter parameter allows to additionally specify a random delay 

that is added after correction. This can be used to simulate the behavior of timeslots. In this example, 

a uniform additional delay is selected from the interval [0𝑚𝑠, 0.5𝑚𝑠] simulating a virtual-time-slot 

based approach with a time-slot length of 500 𝜇𝑠. 

 

Listing 6: Example PDC configuration. 

Based on this configuration, the pdc8 component (as shown in Figure 2) first identifies the stream 

based on INETs streamIdentifier and loads the PDC configuration for the specific stream together with 

𝑡𝑟𝑒𝑠 calculates 𝑡ℎ𝑜𝑙𝑑. If 𝑡ℎ𝑜𝑙𝑑 > 0, the frame is delayed by the pdc component for a duration of 𝑡ℎ𝑜𝑙𝑑 +

𝑗𝑖𝑡𝑡𝑒𝑟. 

Results 

The result of the above configuration is shown in Figure 5. The blue dots represent the delays of the 

frames of Stream 1, while the orange dots represent the delays of the frames of Stream 2. As expected, 

the delays of Stream 1 form a line at 5.82 𝑚𝑠 as configured with some outliers above the line 

corresponding to the expected remaining 30 % of the frames. The delays of Stream2 form a line of 

width 500 𝜇𝑠 corresponding to the configured time-slot size. 

 
7 
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.ResidenceTimeCalcula
tor.html  
8 https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.devices.pdc.PdcDelayer.html  

# default pdc 
delayreplayerContainer 
*.detCom.nwtt.bridging.pdc.defaultPdc = 1ms 
 
# per stream pdc 
*.detCom.nwtt.bridging.pdc.mapping = [ 

{stream:"stream1", pdc:"5.84ms"}, # 70% PDC 
{stream:"stream2", pdc:"10.52ms", jitter:"uniform(0ms,0.5ms)"}] # 99.99% PDC 

 

https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.ResidenceTimeCalculator.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.timestamping.ResidenceTimeCalculator.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.devices.pdc.PdcDelayer.html


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  15 

 

Figure 5: Simulation results of PDC configuration as in Listing 6. 

2.4 Time Synchronization 
In the first release of the simulator [DET23-D41], we gave a brief overview of the current 

implementation of time synchronization, pointing out required work to allow for the simulation of 

gPTP-based time synchronization in converged 6G/TSN networks. In this section, we present our 

changes and fixes to the gPTP implementation of the INET framework itself. These changes will be 

submitted to the INET codebase on GitHub as a pull request following the release of this deliverable. 

Furthermore, we provide the implementation details of gPTP inside the DetCom node. 

 

Figure 6: Architecture of gPTP-based time synchronization in converged networks. 

The architecture of gPTP-based time synchronization in converged 6G/TSN networks has already been 

explained in detail in previous deliverables, such as D2.2 “First Report on the time synchronization for 

E2E time awareness” [DET23-D22] and D2.4 “Report on the time synchronization for E2E time 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  16 

awareness” [DET25-D24]. Thus, we only provide a brief summary of the architecture here and refer 

the reader to these deliverables for a detailed description. Figure 6 shows the architectural overview 

to enable gPTP in converged networks. The figure contains two time domains, the 5G time domain 

(green) and the TSN time domain (blue), with the TSN translators (DS-TT, NW-TT) being on the 

boundary of the two time domains. These two time domains are independent to each other, and 

devices synchronize their clocks to their respective time domain – note that every TT maintains a 5G 

clock and a TSN clock. Most importantly, devices outside of the DetCom node are unaware of the 5G 

time domain, meaning the DetCom node as a whole needs to act like a (transparent) PTP relay 

instance. 

In the following, we present how we implement this architecture in the simulator, starting with our 

modifications to the INET framework and continuing with the additions to our simulation framework. 

2.4.1 Additions to the INET framework 
The INET framework already includes a basic gPTP implementation for TsnDevices (ordinary clocks) 

and TsnSwitches (boundary clocks). As these basic features are insufficient to allow for a full 

evaluation of time synchronization in 6G/TSN networks, we extend the INET framework with 

additional features, namely an implementation of clock servos, a Best Transmitter Clock Algorithm 

(BTCA) implementation, and an extended Hot Standby implementation. 

Clock Servos 

The servo of a clock is responsible for correcting the clock drift of the time receiver (tR) compared to 

the time transmitter (tT). Currently, INET does not provide any clock servos. Instead, when a device 

receives all messages required to synchronize to the grand master (GM), it immediately jumps to the 

calculated time. A clock with this behavior is called a SettableClock in INET. This behavior is shown in 

green in Figure 7. However, this behavior introduces several challenges. On the one hand, a jump 

backward in time might result in events appearing to happen twice. Moreover, non-monotonically 

increasing clocks destroy the causal order of events (invalid “happens-before” relationship between 

events), which makes it impossible to correctly react to events based on their causal dependencies or 

analyze the causal dependency of recorded events (“did one event lead to another event?”). On the 

other hand, a jump forward in time might lead to events being skipped, or, if executed immediately 

lead to conflicts with other events. Therefore, in many cases, such jumps need to be avoided to 

prevent inconsistencies. Instead, the frequency (rate) of the clock being synchronized is controlled by 

the clock servo depending on the clock error (clock skew) to gradually converge to the time of the GM 

clock, also guaranteeing monotonically increasing clock values. To mitigate these issues, we 

implement a clock using a proportional-integral (PI) controller as a clock servo. Such PI controllers are 

a common choice for clock servos used in real-world implementations such as PTP for Linux (ptp4l) 

[Coc25]. Instead of jumping to the calculated time, the servo speeds up or slows down the clock to 

maintain the synchronization to the GM. The behavior of our PiServoClock is shown in orange in Figure 

7. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  17 

 

Figure 7: Comparison of a clock without a clock servo (SettableClock) vs a clock with a PI servo. 

 

Best Transmitter Clock Algorithm (BTCA) 

In the existing INET implementation, time synchronization domains are preconfigured in the 

configuration file of a simulation. This, however, is not suitable for changing dynamic environments. 

Instead, in a real network, the time synchronization architecture is typically configured automatically 

using the Best Transmitter Clock Algorithm (BTCA), previously known as the Best Master Clock 

Algorithm (BMCA). In order to select a GM in a network, devices periodically send Announce messages 

transmitting the state of their current GM. Upon reception of Announce messages, every device 

compares its own local clock to the received Announce messages based on user-defined parameters, 

such as the priority and parameters specifying the clock quality. Using this algorithm, the network 

eventually decides on a single GM in the network and establishes a synchronization tree. 

 

 
(a) Example network 

 
(b) Clock offset to master clock. 

Figure 8: Simple BTCA scenario. 

To allow for a simulation of time synchronization in dynamic environments, we extend the gPTP 

implementation of INET with an implementation of BTCA. As BTCA is responsible for modifying the 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  18 

port states of gPTP, we implement BTCA directly into the existing Gptp9 module. Our implementation 

allows the configuration of the BTCA relevant parameters, such as the grandmasterPriority and 

clockAccuracy. Additionally, the user needs to define the ports that should be considered for the BTCA 

evaluation, i.e., all ports that are not specified are disabled for time synchronization. An example 

configuration for the network shown in Figure 8a is provided in Listing 7. 

 

Listing 7: Example BTCA configuration. 

In our example scenario, we additionally disable the link between tsnDevice1 and tsnSwitch in the 

interval  [7.5 𝑠, 14.5 𝑠] to evaluate the re-selection of a new GM. Figure 8b shows the resulting offset 

of the clocks to the simulation time. In the period between 0 𝑠 and 7.5 𝑠, all clocks are in sync. Then, 

after the link breaks, all clocks are starting to drift apart until 10 𝑠, when tsnDevice3 (as intended by 

the configuration) is selected as the new GM, from when on all devices of the intact network 

synchronize to tsnDevice3. Finally, when the link between tsnDevice1 and tsnSwitch is re-established 

at time 14.5 s, all devices synchronize to tsnDevice1 again. 

Hot Standby 

The INET framework already supports the synchronization of a single network device to multiple gPTP 

domains. However, in the current state, INET does not keep track of the synchronization state of these 

time domains, nor does it switch to the Hot Standby domain in case the primary domain becomes 

unavailable. Thus, we extend the already existing implementation by the missing features. 

The multidomain support for gPTP in INET works by having a MutliDomainGptp module in a device, 

which consists of multiple single gPTP components, each uniquely mapped to gPTP domain number. 

Additionally, each device has a multiClock module consisting of multiple clocks modules. Each gPTP 

module (i.e. domain) is mapped to a clock within this multiClock. The multiClock has an activeClock 

parameter, which is used to specify, which of the clocks is used as the device clock. 

We extend the MultiDomainGptp module with a HotStandby module keeping track of the 

synchronization state of the single gPTP domains. And, based on the specification in the IEEE 

802.1ASdm Hot Standby amendment [IEEE 802.1ASdm], updates the activeClockIndex of the 

multiClock to switch between the primary and the Hot Standby domain. 

 
9 https://doc.omnetpp.org/inet/api-current/neddoc/inet.linklayer.ieee8021as.Gptp.html  

*.tsnDevice*.gptp.bmcaPorts = ["eth0"] 
*.tsnSwitch.gptp.bmcaPorts = ["eth0", "eth1", "eth2"] 
*.tsnDevice1.gptp.grandmasterPriority1 = 2 
*.tsnDevice3.gptp.grandmasterPriority1 = 3 

https://doc.omnetpp.org/inet/api-current/neddoc/inet.linklayer.ieee8021as.Gptp.html


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  19 

 

Figure 9: Network for the HotStandby showcase. 

To showcase our Hot Standby implementation, we use the network as shown in Figure 9. This network 

consists of two time synchronization domains blue (Domain 1) and red (Domain 2), with tsnClock1 and 

tsnClock2 being the GMs of Domain 1 and 2, respectively. All other devices are synchronized two both 

domains with Domain 1 being the primary domain and Domain 2 being the secondary domain. We 

define two failure cases: In the first failure case in the interval [3 s, 7 s] the link between tsnClock1 and 

tsnSwitch1 is disabled, i.e. the GM of Domain 1 goes offline. In the second failure case in the interval 

[10 𝑠, 14 𝑠], the link between tsnSwitch1 and tsnSwitch2 breaks, i.e. the network is partitioned into 

two parts. 

Figure 10 shows the resulting clock drifts. In the first failure case, all network devices switch to the Hot 

Standby domain, diverging from the clock of the primary GM (tsnSwitch1). In the second failure case, 

the devices on the left side of the network remain synchronized to the primary GM, while the right 

side of the network switches to the Hot Standby GM (tsnSwitch2). In both failure cases, all devices 

return to the primary domain, as soon as it is synchronized again. 

 

Figure 10: Clock drifts in the HotStandby showcase. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  20 

2.4.2 Additions to the 6GDetCom Simulator 
Now, after having provided an overview of the new gPTP functions added to INET, we present in more 

detail the modifications to our simulation framework to support time synchronization in the context 

of converged 6G/TSN networks. This includes extensions to the implementation of the TTs as well as 

the implementation of the gPTP component within the TTs. 

6G Clock Model 

In order to enable the ingress and egress timestamping, we need to extend the TTs with a model for 

6G clocks. To this end, we add the detComClock module to every TT. For these clocks, we provide a 

modified oscillator that allows to limit the maximum offset to the simulation time. We can use this 

oscillator to implement a simplified 6G clock model in the simulator. By default, the 6G clocks of the 

TTs are configured to drift apart by a maximum of 450 𝑛𝑠 to ensure compliance with 3GPP's budget 

of 900 𝑛𝑠 [3GPP-TS22104] between two TTs. An example of this configuration is given in Figure 11 for 

a DetCom node with three TTs. 

 

Figure 11: Clock drift of 6G clocks with a simplified model. 

gPTP component modifications 

As mentioned above, gPTP within TTs needs to provide additional functionality, mainly the ingress and 

egress timestamping mechanism. To this end, we extend the gPTP component in the following way. 

For the Sync procedure, when a gPTP module inside a TT receives a Sync or FollowUp message from 

outside the DetCom node, it is handled as in any other TSN switch, and the TSN clock of the TT is 

synchronized according to the contents of the gPTP message. Afterwards, a Sync message is generated 

for transmission to the other TTs (given this TT is the time transmitter for any other TT in the 

synchronization topology). Together with the generation of this Sync message, the ingress timestamp 

TSi is generated for both time domains. We label these timestamps 𝑡𝑖
𝑡𝑠𝑛 and 𝑡𝑖

6𝐺 for the TSN and 6G 

time domain respectively. Timestamp 𝑡𝑖
𝑡𝑠𝑛 is used to calculate the residence time within the gPTP 

component before the generation of the Sync message, while 𝑡𝑖
6𝐺 is added as an internal tag to the 

gPTP FollowUp up message, so it can be encoded by the timeTagging module as described in Section 

2.3.2. Upon reception of the Sync message on the second TT, the egress timestamps 𝑡𝑒
𝑇𝑆𝑁 and 𝑡𝑒

6𝐺 are 

generated for both time domains respectively. These two timestamps can be used to calculate the 

rate ratio between the TSN clocks and the 6G clocks. Upon reception of the corresponding FollowUp 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  21 

message, the contained 𝑡𝑖
6𝐺 timestamp is decoded and used together with 𝑡𝑒

6𝐺 to calculate the 

residence time and correctly add it to the correction field. Afterwards, the gPTP module again behaves 

like inside a TSN switch and sends the Sync and Follow Up message to a device outside of the DetCom 

node. 

Additionally, the gPTP module for TTs contains some more minor changes: As the link delay inside the 

DetCom node is calculated using the ingress and egress timestamping mechanism, no peer delay 

request and response messages are transmitted between TTs. If a TT is selected as the GM of a 

network, it generates the origin timestamps using the detComClock and directly synchronizes its own 

TSN clock to it. 

A detailed analysis of time synchronization in converged 6G/TSN networks together with simulation 

results based on this implementation can be found in [DET25-D24]. 

2.5 Dynamic Scenarios 
For a full validation of time-critical traffic in converged 6G/TSN networks, it is indispensable to also 

analyze the effect of dynamic behavior in a network. Dynamic behavior in a network for example 

includes: 

Variable Stream Sets: In a dynamic setting, new devices might join or leave the network, or a device 

that is already part of the network wants to start or stop an application. Both cases result in 

the addition or removal of streams from the stream set, requiring the scheduler to re-calculate 

schedules. Additionally, a device might change its requirements, which might also require the 

adaptation or re-calculation of the schedule. 

Changing Packet Delay Distributions: Slow and fast fading effects, often caused by device mobility or 

changes in the surrounding environment (e.g., obstacles, reflection, scattering), result in 

temporal variations of the wireless channel. Slow fading typically occurs due to large-scale 

movements (e.g., a user walking through a building), leading to gradual changes in signal 

strength and hence delay characteristics. In contrast, fast fading is induced by small-scale 

movements or multipath propagation, resulting in rapid fluctuations of the channel within 

short time intervals. Both fading effects can lead to a change in the delay distribution, 

eventually requiring an adaptation and/or re-calculation of the current schedule to adapt for 

these changes. 

Variable Topology: The movement of devices or broken links might lead to a new network topology, 

also necessitating a re-calculation of the schedule, similar to the changing stream sets. 

We designed two possible approaches to enable the simulation of dynamic scenarios in the context 

of our simulation framework. Our first approach is to extend the simulation framework with a real 

NETCONF interface, which ultimately enables to connect an existing CNC implementation to control 

the simulated TSN data plane. Obviously, a full implementation of all NETCONF features is complex 

and is, therefore, beyond the scope of our implementation. Instead, the provided implementation is 

an initial step towards such a NETCONF interface for the simulator. Our second approach is a direct 

interface between the simulation and a scheduler. We explain these approaches in detail in the 

following and discuss their respective advantages and disadvantages. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  22 

2.5.1 NETCONF Interface 
In this section, we present our first approach, which extends INET with a NETCONF interface. The goal 

of this approach is to provide a NETCONF interface, so it can be used by a real Centralized Network 

Configuration (CNC). From the view of the CNC, the simulation should behave like a real network, 

whenever possible. This allows to evaluate the functionality of a CNC in a simulated environment 

without the need of adjusting its software. In the following, we first present the architecture of this 

approach, followed by a quick introduction to the usage and an example scenario. 

Architecture 

 

Figure 12: Architecture of the INET NETCONF interface. 

Figure 12 presents an architectural overview of our NETCONF interface. The key-component of the 

interface between the real-world and the simulation is the CNC Bridge. This bridge component is 

responsible to “convert” NETCONF messages from the real CNC to the simulation and vice versa. To 

this end, the CNC Bridge Server provides an SSH endpoint on the same IP address as the NETCONF 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  23 

Servers inside the simulation. This requires the user to bind these IP addresses to a loopback interface 

assuming that the CNC is executed on the same host as the simulator. A detailed description of this 

can be found in the documentation in the repository10. The CNC Side of the CNC Bridge Server also 

terminates the SSH session and extracts the received NETCONF messages from the CNC and forwards 

them to the Simulation Side of the CNC Bridge Server. In the other direction from the simulator to the 

CNC, when a NETCONF message is received from the Simulation Side, the CNC Side sends this NETONF 

message through the SSH connection to the CNC. 

The Proxy CNC within the simulation is implemented as an OMNeT++ component and from the view 

of the simulation it is the CNC. The CNC Bridge Client is connected to the Simulation Side of the CNC 

Bridge Server through a TCP socket. NETCONF messages received from the CNC Bridge Server are 

encoded into INET frames and transmitted as TCP frames within the simulation. NETCONF messages 

received from a NETCONF Server by the Proxy CNC within the simulation are sent through the socket 

to the CNC Bridge Server. 

In order to allow to read and edit the configuration of a TsnSwitch in INET, we introduce a new 

TsnSwitchNetconf module. This module contains a typical INET TsnSwitch, but additionally contains a 

Netconf Server responsible of handling incoming NETCONF messages and performing the intended 

actions based on them. The Netconf Server is based on existing libraries for NETCONF, such as 

Libnetconf2 [Lib25] and Sysrepo [Sys25]. 

Use-Cases 

As already mentioned, a full NETCONF Server implementation is out-of-scope of this project due to its 

complexity. Therefore, we restrict our implementation to support two different exemplary use cases, 

which are of major importance for the validation in the Deterministic6G project. One use case is 

editing and querying the Time-Aware Shaper (TAS) configuration of a TsnSwitchNetconf, and the other 

use case is gathering information about connected neighbors using LLDP. 

 

Figure 13: Network of the NETCONF showcase. 

Figure 13 shows a simple network, which we use in the following to showcase the two use cases. In 

our first use case, we start the simulation with the initial TAS configuration shown in Listing 8. 

 
10 https://github.com/DETERMINISTIC6G/netconf-for-inet/blob/master/cnc-bridge-server/README.md  

https://github.com/DETERMINISTIC6G/netconf-for-inet/blob/master/cnc-bridge-server/README.md


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  24 

 

Listing 8: Initial TAS configuration. 

We then perform a NETCONF get request to query for the current TAS configuration. The output is 

shown in Listing 9. As can be seen, the YANG module contains a different format than the simulation 

configuration due to the way NETCONF and INET specify the configuration of GCLs. Our 

implementation performs the necessary conversion. In the YANG module, each entry corresponding 

to a gate state of all gates and a duration. In the first entry, only gate 0 is open (gate state 

000000012 = 110) for 4 𝑚𝑠. After that, gate 1 is open for 2 𝑚𝑠 (gate state 000000102 = 210). Lastly, 

all gates are closed for another 4 𝑚𝑠. This matches our initial simulation configuration. 

We then perform an edit-config request (shown in Listing 10) to modify the GCL of the switch. By 

setting the admin-base-time parameter, we can define the time when the configuration should be 

applied by the switch. In our example we set this value to 67 𝑚𝑠. The new GCL configuration has a 

period of 15 𝑚𝑠 of gate 1 followed by a 2 𝑚𝑠 period with both gates closed, and finally a 13 ms period 

with only gate 0 open. 

Figure 14 shows the results of this scenario. The period after reconfiguration is highlighted in green 

from 67 𝑚𝑠 on. The gate states of gate 0 and gate 1 are shown on blue and brown, respectively. As 

can be seen, the re-configuration of the gates works as expected. 

To showcase the LLDP implementation for retrieving the network topology (an essential information 

to perform stream routing tasks by the CNC), we launch another simulation and request LLDP 

information from the switch module. The LLDP response is shown in Listing 11. As can be seen, the 

switch module correctly returns the (simulated) MAC addresses of the connected devices together 

with their name and for switch2 additionally returns the IP address of its NETCONF server. 

Discussion 

Our two showcases above show that it is feasible to extend the OMNeT++ simulator with a NETCONF 

interface to get and edit the config of TsnSwitches in INET. However, this approach also has a few 

downsides. 

First, OMNeT++ and INET were not developed with NETCONF or YANG in mind. Thus, the way of 

configuring modules in the simulation is inherently different from NETCONF. To this end, providing a 

fully-fledged NETCONF interface for INET requires to add a whole new interface of configuration for 

every supported YANG module. Additionally, INET does not support the concept of different 

datastores (pending, running, …) by default. By adding these datastores to the simulation, for every 

YANG module, consistency between the actual simulation configuration and the datastores needs to 

be ensured, introducing new room for error and additional development overhead. 

Secondly, the simulation time and real-world time are not only different in their absolute value, but 

additionally the simulation time does not necessarily proceed in the same speed as the real-world 

time. While OMNeT++ allows to limit the simulation speed to the real-world time (i.e. the time in the 

simulation never runs faster than the real-world time), bigger simulations typically run slower than 

the real-world time due to their complexity. As especially in time-critical applications a correct sense 

**.switch...transmissionGate[0].offset = 0ms 
**.switch...transmissionGate[0].durations = [4ms, 6ms]  
**.switch...transmissionGate[1].offset = 6ms 
**.switch...transmissionGate[1].durations = [2ms, 8ms] 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  25 

of time is required by the CNC, providing a fully transparent interface between the CNC and the 

simulation is complex and requires sophisticated synchronization concepts. 

Lastly, the setup complexity of the interface is quite high, as it requires the setup of virtual network 

interfaces and an additional simulation-external module to be started along with the simulation to 

allow for a communication between a CNC and the simulation. 

Therefore, a full-fledged implementation of a NETCONF interface for the simulator is beyond the 

scope of this project. The given implementation can be considered a first step towards such an 

implementation. However, in order to reduce complexity and focus on the validation targets of the 

project, we next propose an alternative interface, which can be integrated with INET more easily. 

 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  26 

 

 

Listing 9: Examplary get-config response. 

<gate-parameter-table xmlns="urn:ieee:std:802.1Q:yang:ieee802-dot1q-sched-bridge"> 
    <gate-enabled>true</gate-enabled> 
    <admin-gate-states>1</admin-gate-states> 
    <oper-gate-states>1</oper-gate-states> 
    <admin-control-list> 
        <gate-control-entry> 
            <index>0</index> 
            <operation-name xmlns:sched="urn:ieee:std:802.1Q:yang:ieee802-dot1q-

sched">sched:set-gate-states 
            </operation-name> 
            <time-interval-value>4000000</time-interval-value> 
            <gate-states-value>1</gate-states-value> 
        </gate-control-entry> 
        <gate-control-entry> 
            <index>1</index> 
            <operation-name xmlns:sched="urn:ieee:std:802.1Q:yang:ieee802-dot1q-

sched">sched:set-gate-states 
            </operation-name> 
            <time-interval-value>2000000</time-interval-value> 
            <gate-states-value>2</gate-states-value> 
        </gate-control-entry> 
        <gate-control-entry> 
            <index>2</index> 
            <operation-name xmlns:sched="urn:ieee:std:802.1Q:yang:ieee802-dot1q-

sched">sched:set-gate-states 
            </operation-name> 
            <time-interval-value>4000000</time-interval-value> 
            <gate-states-value>0</gate-states-value> 
        </gate-control-entry> 
    </admin-control-list> 
    <admin-cycle-time> 
        <numerator>10000000</numerator><denominator>1000000000</denominator> 
    </admin-cycle-time> 
    <oper-cycle-time> 
        <numerator>10000000</numerator><denominator>1000000000</denominator> 
    </oper-cycle-time> 
    <admin-base-time> 
        <seconds>0</seconds><nanoseconds>0</nanoseconds> 
    </admin-base-time> 
    <oper-base-time> 
        <seconds>0</seconds><nanoseconds>0</nanoseconds> 
    </oper-base-time> 
    <config-change>false</config-change> 
    <config-change-time> 
        <seconds>0</seconds><nanoseconds>0</nanoseconds> 
    </config-change-time> 
    <current-time> 
        <seconds>0</seconds><nanoseconds>10028850</nanoseconds> 
    </current-time> 
    <config-pending>false</config-pending> 
    <config-change-error>0</config-change-error> 
    <supported-list-max>4294967295</supported-list-max> 
    <supported-cycle-max> 
        <numerator>4294967295</numerator><denominator>1</denominator> 
    </supported-cycle-max> 
    <supported-interval-max>4294967295</supported-interval-max> 
</gate-parameter-table> 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  27 

 

 

 

Listing 10: Exemplary edit-config to modify the gates of switch. 

<interfaces 
        xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"> 
    <interface> 
        <name>eth1</name> 
        <type xmlns:ianaif="urn:ietf:params:xml:ns:yang:iana-if-

type">ianaif:ethernetCsmacd</type> 
        <bridge-port 
                xmlns="urn:ieee:std:802.1Q:yang:ieee802-dot1q-bridge"> 
            <gate-parameter-table 
                    xmlns="urn:ieee:std:802.1Q:yang:ieee802-dot1q-sched-bridge"> 
                <config-change>true</config-change> 
                <gate-enabled>true</gate-enabled> 
                <admin-base-time> 
                    <seconds>0</seconds> 
                    <nanoseconds>67000000</nanoseconds> 
                </admin-base-time> 
                <admin-cycle-time> 
                    <numerator>30000000</numerator> 
                    <denominator>1000000000</denominator> 
                </admin-cycle-time> 
                <admin-gate-states>2</admin-gate-states> 
                <admin-control-list 
                        xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0" 
                        xc:operation="replace"> 
                    <gate-control-entry> 
                        <index>0</index> 
                        <operation-name 
                                xmlns:sched="urn:ieee:std:802.1Q:yang:ieee802-dot1q-

sched">sched:set-gate-states</operation-name> 
                        <time-interval-value>15000000</time-interval-value> 
                        <gate-states-value>2</gate-states-value> 
                    </gate-control-entry> 
                    <gate-control-entry> 
                        <index>1</index> 
                        <operation-name 
                                xmlns:sched="urn:ieee:std:802.1Q:yang:ieee802-dot1q-

sched">sched:set-gate-states</operation-name> 
                        <time-interval-value>2000000</time-interval-value> 
                        <gate-states-value>0</gate-states-value> 
                    </gate-control-entry> 
                    <gate-control-entry> 
                        <index>2</index> 
                        <operation-name 
                                xmlns:sched="urn:ieee:std:802.1Q:yang:ieee802-dot1q-

sched">sched:set-gate-states</operation-name> 
                        <time-interval-value>13000000</time-interval-value> 
                        <gate-states-value>1</gate-states-value> 
                    </gate-control-entry> 
                </admin-control-list> 
            </gate-parameter-table> 
        </bridge-port> 
    </interface> 
</interfaces> 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  28 

 

Figure 14: Reconfiguration of TAS during simulation using NETCONF. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  29 

 

Listing 11: LLDP response for example network. 

  

<lldp xmlns="urn:ieee:std:802.1AB:yang:ieee802-dot1ab-lldp"> 
    <port> 
        <name>eth0</name> 
        <dest-mac-address>0A-AA-00-00-00-02</dest-mac-address> 
        <port-id>100</port-id> 
        <remote-systems-data> 
            <!-- omitted some less important elements --> 
            <system-name>TsnLinearNetworkNetconfTwoSwitches.client</system-name> 
            <system-description>TsnDevice</system-description> 
        </remote-systems-data> 
    </port>  
    <port> 
        <name>eth1</name> 
        <dest-mac-address>0A-AA-00-00-00-03</dest-mac-address> 
        <port-id>101</port-id> 
        <remote-systems-data> 
            <time-mark>0</time-mark> 
            <remote-index>101</remote-index> 
            <chassis-id-subtype>mac-address</chassis-id-subtype> 
            <chassis-id>0A-AA-00-00-00-07</chassis-id> 
            <system-name>TsnLinearNetworkNetconfTwoSwitches.switch2.switch</system-name> 
            <system-description>TsnSwitchManaged</system-description> 
            <management-address> 
                <address-subtype xmlns:rt="urn:ietf:params:xml:ns:yang:ietf-

routing">rt:ipv4</address-subtype> 
                <address>010A0B0C02</address> 
            </management-address> 
        </remote-systems-data> 
    </port> 
    <port> 
        <name>eth2</name> 
        <dest-mac-address>0A-AA-00-00-00-04</dest-mac-address> 
        <port-id>102</port-id> 
        <remote-systems-data> 
            <!-- omitted some less important elements --> 
            <system-name>TsnLinearNetworkNetconfTwoSwitches.cnc</system-name> 
            <system-description>CentralizedNetworkController</system-description> 
        </remote-systems-data> 
    </port> 
    <port> 
        <name>eth3</name> 
        <dest-mac-address>0A-AA-00-00-00-05</dest-mac-address> 
        <port-id>103</port-id> 
        <remote-systems-data> 
            <!-- omitted some less important elements --> 
            <system-name>TsnLinearNetworkNetconfTwoSwitches.switch.netconfServer</system-

name> 
            <system-description>NetconfServer</system-description> 
        </remote-systems-data> 
    </port> 
</lldp> 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  30 

2.5.2 Direct Scheduler Interface 
Our second approach aims to overcome the issues of the first approach, by providing a direct and 

dynamic scheduler interface to INET. We base our implementation on an already existing INET 

implementation to configure schedules at startup11 and extend it with dynamic scheduler calls at 

simulation time and with features required to schedule streams in converged 6G/TSN networks. We 

first explain our newly introduced modules, followed by an example showcase. 

Dynamic Scheduling Modules 

Our dynamic scheduling implementation consists of three main modules, the DynamicPacketSource, 

ChangeMonitor, and the ExternalGateScheduleConfigurator, which we describe in the following. 

The DynamicPacketSource12 module extends INETs ActivePacketSource13, which is typically part of an 

UdpApp14 in INET and can be used to generate UDP packets. Our extension of this module adds more 

parameters to allow for a dynamic reconfiguration of the sending behavior of an app. Our new 

parameters are described in detail in Table 2. In general, for most parameters there is an equivalent 

pending parameter which indicates that the app intends to change this parameter upon the 

confirmation of the scheduler. Default values marked with an “@” default to the defined value of the 

referenced parameter. 

Parameter Type Default Explanation 

enabled bool 𝑡𝑟𝑢𝑒 Defines whether the app is currently 
enabled (generating UDP packets) or 
not. 

pendingEnabled bool @enabled Changing this parameter calls the 
scheduler and afterwards updates the 
enabled parameter. 

packetLength byte none Defines the length of the generated 
packet (excluding headers added by 
following modules). 

pendingPacketLength byte @packet 
Length 

Changing this parameter calls the 
scheduler and afterwards updates the 
packetLength parameter. 

productionInterval seconds −1𝑠 (once at 
startup) 

Defines the interval at which packets 
are generated. 

pendingProductionInterval seconds @production 
Interval 

Changing this parameter calls the 
scheduler and afterwards updates the 
productionInterval parameter. 

pcp int 0  Defines the PCP value of the stream. 

reliability double 1.0  Defines the required reliability of the 
stream. 

 
11 https://inet.omnetpp.org/docs/showcases/tsn/gatescheduling/index.html  
12 
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.apps.dynamicsource.DynamicPacket
Source.html  
13 https://doc.omnetpp.org/inet/api-current/neddoc/inet.queueing.source.ActivePacketSource.html  
14 https://doc.omnetpp.org/inet/api-4.4.0/neddoc/inet.applications.udpapp.UdpApp.html  

https://inet.omnetpp.org/docs/showcases/tsn/gatescheduling/index.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.apps.dynamicsource.DynamicPacketSource.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.apps.dynamicsource.DynamicPacketSource.html
https://doc.omnetpp.org/inet/api-current/neddoc/inet.queueing.source.ActivePacketSource.html
https://doc.omnetpp.org/inet/api-4.4.0/neddoc/inet.applications.udpapp.UdpApp.html


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  31 

maxLatency ms @production 
Interval 

Defines the maximum allowed end-to-
end delay of this stream. 

maxJitter ms 0.05 ∗ 
@production 
Interval 

Defines the maximum allowed jitter of 
this stream. 

productionOffsets seconds[] [0𝑠]  Defines an array of offsets relative to 
the productionInterval. This is typically 
set by the scheduler to configure 
different offsets of multiple cycles 
within an hypercycle. 

Table 2: Configuration parameters of the DynamicPacketSource module. 

The parameters of the DynamicPacketSource module can be changed using INETs ScenarioManager15, 

which allows to make changes at defined points in simulation time. The same applies to the 

delayUplink and delayDownlink paramaters of TTs inside of the DetCom node (see Section 2.1). The 

ChangeMonitor16 is responsible for tracking the changes, mainly the changes of delay distributions 

and parameters of apps using the DynamicPacketSource module. The ChangeMonitor is also 

responsible of gathering all important information for the scheduler, such as histograms. In case the 

histogram is not provided using our Histogram module (see Section 2.1), it samples the defined delay 

distribution. The important parameters of this module are presented in Table 3. 

Parameter Type Default Explanation 

schedulerCallDelay seconds 0𝑠 After detecting a change, the 
ChangeMonitor wait for the specified 
time before performing a call to the 
scheduler. This can be used to gather 
multiple simultaneous changes before 
calling the scheduler. 

numberOfSamples int 1,000,000 Defines the number of samples to 
generate a histogram, if the delay 
distribution is not defined using our 
Histogram module. 

Table 3: Configuration parameters of the ChangeMonitor module. 

After detecting the changes and optionally waiting for the defined call delay, the ChangeMonitor calls 

the ExternalGateScheduleConfigurator17. This module is responsible for calling a configured scheduler 

and afterwards configuring the GCLs of all TSN devices as well as the production offsets and enabled 

state of all DynamicPacketSource apps. The configuration parameters are provided in Table 4. All file 

paths are relative to the SCHEDULER_ROOT environment variable, which needs to be defined before 

executing the simulation. When calling the scheduler, our simulation also transmits the current 

simulation time to the scheduler and requires the scheduler to respond with a commitTime in its result 

 
15 https://doc.omnetpp.org/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html  
16 
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.dynamicscenario.ChangeMonitor.ht
ml  
17 
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.dynamicscenario.ExternalGateSched
uleConfigurator.html  

https://doc.omnetpp.org/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.dynamicscenario.ChangeMonitor.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.dynamicscenario.ChangeMonitor.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.dynamicscenario.ExternalGateScheduleConfigurator.html
https://deterministic6g.github.io/6GDetCom_Simulator/doc/neddoc/d6g.dynamicscenario.ExternalGateScheduleConfigurator.html


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  32 

file. This commit time represents a simulation timestamp, when the returned configuration should be 

applied to the TSN devices. It is the scheduler’s responsibility to ensure that this commit time does 

not break the existing schedule, e.g., by frames of the old schedule still being in transmission. 

Parameter Type Explanation 

command string Defines the command that is called to execute the scheduler. The first 
%s is replaced with the networkFile parameter, the second %s is replaced 
with the streamsFile parameter, etc. 
Example: 
./scheduler.py --network %s --streams %s --dist %s --out %s 

networkFile string Defines the file path where the file defining the network topology is 
stored. 

streamsFile string Defines the file path where the file defining the stream requirements is 
stored. 

histogramsFile string Defines the file path where a file containing all delay distributions is 
stored. 

configurationFile string Defines the file path where the scheduler outputs its calculated TSN 
schedule. 

Table 4: Configuration parameters of the ExternalGateSchedulingConfigurator module. 

Showcase 

 

Figure 15: Network of the dynamic scenario showcase. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  33 

To showcase our dynamic scheduler interface, we set up a scenario containing different types of 

dynamic behavior. The network of this showcase is depicted in Figure 15. Device wirelessdevice1 is 

connected to the DetCom node via dstt[0] and wirelessdevice2 is connected to the DetCom node via 

dstt[1]. The network consists of five streams with the configuration provided in Table 5. Additionally, 

our simulation holds multiple histograms, as described in Table 6, with the initial configuration as 

provided in Listing 12. 

stream source dest. enabled packetLength productionInterval 

1 (blue) device3 wirelessdevice2 𝑓𝑎𝑙𝑠𝑒 1000 𝐵 30 𝑚𝑠 

2 (orange) device2 wirelessdevice2 𝑡𝑟𝑢𝑒 1000 𝐵 50 𝑚𝑠 
3 (green) wirelessdevice1 wirelessdevice2 𝑡𝑟𝑢𝑒 1000 𝐵 50 𝑚𝑠 

4 (red) wirelessdevice1 device2 𝑡𝑟𝑢𝑒 1000 𝐵 30 𝑚𝑠 

5 (purple) device1 wirelessdevice1 𝑡𝑟𝑢𝑒 1000 𝐵 30 𝑚𝑠 
Table 5: Initial stream configuration. 

 

histogram description 

Uplink Uplink histogram of the PD-Wireless-5G-1 dataset [HDM+23] 
(See Figure 3a). 

Uplink_improve Uplink histogram shifted 1 𝑚𝑠 to the left. 

Uplink_worse Uplink histogram shifted 1 𝑚𝑠 to the right. 

Downlink Downlink histogram of the PD-Wireless-5G-1 dataset [HDM+23] 
(See Figure 3b). 

Downlink_improve Downlink histogram shifted 1 𝑚𝑠 to the left. 

Downlink_worse Downlink histogram shifted 1 𝑚𝑠 to the right. 
Table 6: Available histograms. 

 

Listing 12: Initial histogram configuration. 

The dynamics of our scenario is defined using INETs ScenarioManager with the configuration as 

provided in Listing 13. The resulting end-to-end delays of this configuration are shown in Figure 16: 

1. At 𝑡 = 20 𝑠, stream2 requests to stop its stream. After the execution of the scheduler, the 

stream is stopped, which is visible in the results by the ending orange line. At the same time 

the scheduler re-schedules stream3 resulting in a change of its end-to-end delay. 

2. At 𝑡 = 40 𝑠, stream3 wants to increase the production interval and packet size. This again 

leads to a re-scheduling of stream3 resulting in the change of its end-to-end delay. 

3. At 𝑡 = 50 𝑠, the downlink histogram of dstt1 improves (shifting 1 𝑚𝑠 to the left), while the 

uplink histogram of dstt0 degrades (shifting 1 𝑚𝑠 to the right) resulting in rescheduling of 

stream3 and stream4. 

4. At 𝑡 = 60 𝑠, stream1 requests to start sending new data, while at the same time stream3 

immediately stops sending data. This becomes visible in the results by the ending green line 

and the newly starting blue line. 

**.dstt[0].delayDownlink = rngProvider("histogramContainer","Downlink_worse") 
**.dstt[1].delayDownlink = rngProvider("histogramContainer","Downlink") 
**.dstt[*].delayUplink = rngProvider("histogramContainer","Uplink") 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  34 

5. At 𝑡 = 80 𝑠, the downlink histogram of dstt0 improves (shifting 1 𝑚𝑠 to the right), resulting 

in a reduced end-to-end delay for stream5. 

Discussion 

Our direct scheduler interface for the 6GDetCom Simulator allows for the simulation of dynamic 

scenarios and a direct evaluation of the effects of adapted schedules. As the only perquisite to connect 

a scheduler to our framework is the conformity with our predefined file format, this approach is 

flexible and easy to set up. 

However, the current implementation only provides basic features to update the GCL of devices. 

Further functionality, such as configuring PSFP, might be added in the future, e.g., if necessary for 

further evaluation in the upcoming deliverable D4.5 “Validation for DETERMINISTIC6G concepts”. 

 

Listing 13: Dynamic scenario configuration. 

<!--stop stream2 --> 
<at t="20"> 
    <set-param module="device2.app[0].source" 
               par="pendingEnabled" value="false"/> 
</at> 
 
<!-- Change interval and packet length of stream3 --> 
<at t="40"> 
    <set-param module="wirelessdevice1.app[2].source" 
               par="pendingProductionInterval" value="300ms"/> 
    <set-param module="wirelessdevice1.app[2].source" 
               par="maxLatency" value="300ms"/> 
    <set-param module="wirelessdevice1.app[2].source" 
               par="pendingPacketLength" value="1200B"/> 
</at> 
 
 
<!-- downlink delay of dstt1 improves --> 
<set-param t="50" module="detComOne.dstt[1]" 
           par="delayDownlink" 
           expr="rngProvider(&quot;histogramContainer&quot;,&quot;Downlink_improve&quot;)" 
/> 
 
<!-- uplink delay of dstt0 degrades --> 
<set-param t="50" module="detComOne.dstt[0]" 
           par="delayUplink" 
           expr="rngProvider(&quot;histogramContainer&quot;,&quot;Uplink_worse&quot;)"/> 
 
<!-- start stream1 and stop stream3 --> 
<at t="60"> 
    <set-param module="device3.app[0].source" 
               par="pendingEnabled" value="true"/> 
    <set-param module="wirelessdevice1.app[2].source" 
               par="enabled" value="false"/> 
</at> 
 
<!-- downlink delay of dstt0 improves --> 
<set-param t="80" module="detComOne.dstt[0]" 
           par="delayDownlink" 
           expr="rngProvider(&quot;histogramContainer&quot;,&quot;Downlink&quot;)"/> 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  35 

 

Figure 16: Resulting end-to-end delays in the dynamic scenario. 

  



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  36 

3 6GDetCom Emulator 
While our simulator framework described above allows for the simulation and analysis of novel 6G 

features, it does not allow to analyze the behavior of real applications in converged 6G/TSN networks. 

Providing realistic simulation models for applications is often very complex and unattractive if the real 

application already exists. To facilitate the testing and evaluation of real applications under 5G/6G 

network conditions, we propose the novel 6GDetCom Emulator, which allows to emulate the 

characteristic PD of virtual 6G bridges in a real network, without the need of dedicated 5G/6G 

hardware. In the Deterministic6G project, we use this framework in particular to validate the 

exoskeleton applications. Results of this validation will be available in the upcoming Deliverable D4.5. 

3.1 Architecture of the Network Delay Emulator 
The core of the emulator is a Linux Queueing Discipline (QDisc) called sch_delay that can be assigned 

to network interfaces to add artificial delay to all packets leaving through this network interface.  

Figure 17 shows the system architecture consisting of two major parts: the QDisc running in the kernel 

space, and a user-space application providing individual delays for each transmitted packet through a 

character device. The provided delays are buffered in the QDisc, such that delay values are available 

immediately when new packets arrive. Whenever a packet is to be transmitted through the network 

interface, the next delay value is dequeued and applied to the packet before passing it on to the 

network interface (TX queue). 

 

Figure 17: Architecture of the Network Delay Emulator 

Providing delays through a user-space application allows for a flexible and convenient definition of 

delays without touching any kernel code. The project contains a sample user-space application 

implemented in Python to define delays as constant values, normal distributions (probability density 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  37 

function), or histograms (as can be derived from our measurements in our 5G/6G testbed). This 

application can be easily extended to calculate other delay distributions. 

The QDisc can also be applied to network interfaces that are assigned to a virtual bridge to apply 

individual delay distributions to packets forwarded through different egress interfaces. This allows for 

emulating the end-to-end network delay of a whole emulated network with a single Linux machine. 

One limitation of this approach based on pre-calculating and buffering delays is that it is restricted to 

independent and identically distributed (i.i.d.) delays. If the delay of a specific packet depends on the 

delay of an earlier packet, this cannot be easily modelled by this approach since delays were already 

calculated and buffered possibly long before the packet to be delayed actually arrives. Also changing 

the delay distribution at runtime is not easily possible due to the buffering of delays from the old 

distribution.  

QDiscs are typically configured with the tc (traffic control) command in Linux. Since the sch_delay 

QDisc requires specific parameters as shown next, a modified version of tc is required (a patch for tc 

is also included in the GitHub repository of the Network Delay Emulator). The following parameters 

are available to configure the QDisc: 

Option Type Default Explanation 

limit int 1000 The size of the internal queue for buffering delayed packets. If this 
queue overflows, packets will get dropped. For instance, if packets 
are delayed by a constant value of 10 𝑚𝑠 and arrive at a rate of 

1000
𝑝𝑘𝑡

𝑠
, then a queue of at least 1000

𝑝𝑘𝑡

𝑠
∗  10 ∗ (10−3𝑠)  =

 10 𝑝𝑘𝑡 would be required. A warning will be posted to the kernel 
log if messages are dropped. 

reorder bool 𝑡𝑟𝑢𝑒 Whether packet reordering is allowed to closely follow the given 
delay values, or keep packet order as received. If packet reordering 
is allowed, a packet with a smaller random delay might overtake an 
earlier packet with a larger random delay in the QDisc. If packet re-
ordering is not allowed, additional delay might be added to the 
given delay values to avoid packet re-ordering. 

Table 7: Configuration Parameters 

A detailed tutorial on how to use and setup the 6GDetCom Emulator can be found in the GitHub 

repository18, as well as in the DETERMINISITC6G blog post19 dedicated to the usage of the network 

delay emulator. 

3.2 Evaluation of Delay Emulation Accuracy 
To give an impression on the accuracy to be expected with the 6GDetCom Emulator, we performed 

measurements with the following virtual bridge setup as shown in Figure 18. We used network taps 

in fiber optic cables (red dots) and an FPGA network measurement card from Napatech (NT40E3-4-

PTP) to capture the traffic from H1 (sender) to H2 (receiver) with nano-second precision. 

 
18 https://github.com/DETERMINISTIC6G/6GDetCom_Emulator  
19 https://blog.deterministic6g.eu/posts/2024/10/26/network_delay_emulator.html  

https://github.com/DETERMINISTIC6G/6GDetCom_Emulator
https://blog.deterministic6g.eu/posts/2024/10/26/network_delay_emulator.html


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  38 

 

Figure 18: Evaluation setup. 

The sender app on H1 sends minimum-size (64B) UDP packets at a rate of 100 pkt/s and at a speed of 

10 Gbps to the receiver app on H2. The QDisc is configure with a normal distribution with mean = 10 

ms and stddev = 1 ms. 

As baseline, we also capture a trace with zero delay emulation (w/o QDisc on eth1). Traces were 

captured for about 10 min. 

The specs of the Hemu host are: 

• Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz 

• 16 GB RAM 

Figure 19 shows the histogram of the measured (emulated) end-to-end delay overlayed with the input 

histogram. We see that the emulated delay closely follows the input with a small offset, which could 

already be considered (subtracted) in the delay value generation. 

 

Figure 19: Comparison of emulated end-to-end delay and input histogram. 

Figure 20 shows the histograms of the actual delay between the measurement points. Theoretically, 

we would need to subtract: 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  39 

1. One transmission delay ((64 ∗ 8 𝑏𝑖𝑡) / 10 𝐺𝑏𝑝𝑠 =  𝟓𝟏. 𝟐 𝒏𝒔) since Hemu will only start 

processing the packet when it has been fully received, and the measurement card takes the 

timestamp at the header. 

2. The propagation delay for about 6 𝑚  fiber cable (about 6 𝑚 / (
2

3
∗ 3 ∗ 108 𝑚

𝑠
)  =  𝟑𝟎 𝒏𝒔) 

connecting the tap to the measurement card. 

However, since this delay is only in the range of microseconds or below, we report values as measured. 

 
(a) Normal distribution 

 
(b) No emulated delay 

Figure 20: Accuracy analysis of emulated delays 

For the normal distribution, the following values were measured: 

• mean = 10.126314 𝑚𝑠 

• stddev = 0.996269 𝑚𝑠 

• 99 % confidence interval of the mean = [0.010115941 𝑠, 0.010136687 𝑠]  

• min = 5.947590 𝑚𝑠 

• max = 14.116764 𝑚𝑠 

Without delay emulation, the delay was: 

• mean = 81.662 𝜇𝑠 

• 99 % confidence interval of the mean 

= [81.593 𝜇𝑠, 81.730 𝜇𝑠] 

• min = 10.252 𝜇𝑠 

• max = 99.421 𝜇𝑠 

We see that the delay added without any emulated delay is around 81 us. This could be considered as 

an offset when creating delay distributions. 

An analysis of a real-world application will be available in the following deliverable D4.5. 

  



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  40 

4 Secure PTP Time Synchronization Emulation Framework 

4.1 Introduction 
In D3.2 “Report on the Security Solutions” [DET23-D32], we introduced a security-by-design approach 

that integrates high-precision telemetry with a programmable data plane to enhance security 

management in deterministic network applications. This section presents an emulation framework 

which implements this approach to secure End-to-End (E2E) time synchronization using PTP, which is 

further utilized in D2.4 “Report on the time synchronization for E2E time awareness” [DET25-D24].  

Leveraging programmable data planes, our framework employs In-band Network Telemetry (INT) to 

embed monitoring data within PTP extension fields, eliminating the need for additional probe packets, 

and reducing network traffic overhead. A collector module captures PTP packets, extracts telemetry 

data, and facilitates real-time TDA detection and localization. To validate this approach, we emulate a 

time synchronization network using Mininet, where each end-host functions as an Ordinary Clock (OC) 

and the switch operates as a Transparent Clock (TC). The OC is implemented by LinuxPTP [CM+10], 

while the TC is developed using the P4 (Programming Protocol-Independent Packet Processors) 

programming language. This emulation framework represents a step toward integrating time 

synchronization processes into software-defined and programmable networking architectures. The 

following section details the technical implementation of these components. 

4.2 Framework Description 

4.2.1 Emulation Network 
We use Mininet to emulate a PTP time synchronization network. Figure 21 represents a time 

synchronization network consisting of two OCs and three TCs. Each clock is running in an isolated 

network node, which is either an end-host or a switch.  

 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  41 

 
Figure 21: Security Emulation Framework of PTP Time Synchronization. 

The emulation framework enables users to define the network topology and configure it through a 

JSON configuration file, streamlining the setup and deployment of the simulated environment. Listing 

14 provides an example of this configuration, corresponding to the network illustrated in Figure 21. 

The configuration file consists of the following elements: 

• hosts: list of end-hosts. Each host is configured by the following information: 

o ip: IP address of the host 

o mac: MAC address of the host 

o commands: list of Bash-based commands to be executed at startup 

• switches: list of switches. Each switch is configured by the following information: 

o config: path to the file containing commands to configure the switch's IP routing table, 

INT. 

o commands: list of Bash-based commands to be executed at startup 

o override_ports: a table mapping host's NIC into the emulator's NIC 

• link: connections between hosts and switches. A host can connect directly to another host or 

a port of a switch. A switch may have at least two ports. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  42 

 

Listing 14: Configuration File of the Emulator. 

The emulation framework can be deployed on either a single machine or multiple machines. When 

executed on a single machine, it is necessary to configure the slave clock in free-running mode to 

prevent it from updating the system time. By default, each switch or host port is instantiated using a 

virtual network interface, meaning that clocks rely on software timestamps. However, the framework 

also supports binding a virtual port to a physical network interface, via the "override_ports" 

parameter, allowing clocks to utilize hardware timestamps provided by the underlying hardware. This 

significantly enhances time synchronization accuracy. Although this approach improves precision, it 

explicitly requires compatible hardware support to enable hardware timestamping. 

 

4.2.2 P4-based Programmable Transparent Clock 
The primary role of a transparent clock (TC) is to precisely measure residence time and adjust PTP 

messages accordingly to maintain accurate time synchronization across the network. Implementing 

this in P4 requires extending BMv2 to timestamp packets at both ingress and egress ports. These 

timestamps are used to calculate the residence time of the packet. The residence time is then carried 

in the correctionField of its associated packet.  For example, the ingress and egress timestamps of a 

Sync (or Delay_Req) packet are captured and stored to later update the correctionField of its 

{ 
  "hosts": { 
    "h1": { 
      "ip": "10.0.1.1/24", "mac": "08:00:00:00:01:11", 
      "commands": [ 
        "route add default gw 10.0.1.10 dev eth0", 
        "arp -i eth0 -s 10.0.1.10 08:00:00:00:01:00", 
        "ptp4l -i eth0 -f ./configs/master.cfg -m" 
      ] 
    }, 
    "h2": { 
      "ip": "10.0.2.2/24", "mac": "08:00:00:00:02:22", 
      "commands": [ 
        "route add default gw 10.0.2.20 dev eth0", 
        "arp -i eth0 -s 10.0.2.20 08:00:00:00:02:00", 
        "ptp4l -i eth0 -f ./configs/slave.cfg -m" 
      ] 
    } 
  }, 
  "switches": { 
    "s1": {"config": "configs/s1.txt"}, 
    "s2": {"config": "configs/s2.txt"}, 
    "s3": {"config": "configs/s3.txt", 
      "override_ports": {"2": "enp0s31f6"}, 
      "commands": ["python collector/collector.py --nic s3-eth2"] 
    } 
  }, 
  "links": [ 
    ["h1", "s1-p1"], 
    ["s1-p2", "s2-p1"], 
    ["s2-p2", "s3-p1"], 
    ["s3-p2", "h2"] 
  ] 
} 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  43 

associated Follow_Up (or Delay_Res) packet. This pairing of packets, such as Sync and Follow_Up, is 

identified using a 3-tuple (clockId, portId, sequenceId) to ensure proper correlation. 

Listing 15 introduces four additional primitives that enable a P4 program to capture and retrieve 

ingress and egress timestamps of a PTP packet as it traverses a BMv2 virtual switch. 

 

Listing 15: Additional Primitives of BMv2. 

Listing 16 presents a P4 skeleton that uses these primitives to implement a transparent clock. The 

implementation follows these steps: 

• Capture ingress and egress timestamp of Sync and Delay_Req messages 

• Upon detecting Follow_Up or Delay_Res message: 

o Retrieve ingress and egress timestamps of its corresponding message. 

o Update the telemetry information in TLV extension. 

o Adjust the correctionField value accordingly. 

o Update the PTP message length to account for the additional TLV. 

// capture ingress timestamps 
extern void ptp_store_ingress_mac_tstamp(in bit<64> clockId, in bit<16> portId, 

in bit<16> seqId); 
// retrieve ingress timestamps 
extern void ptp_get_ingress_mac_tstamp(in bit<64> clockId, in bit<16> portId, 

in bit<16> seqId, out bit<64> rx_tstamp); 
 
// capture egress timestamps 
extern void ptp_capture_egress_mac_tstamp(in bit<64> clockId, in bit<16> portId, 

in bit<16> seqId); 
// retrieve egress timestamps 
extern void ptp_get_egress_mac_tstamp(in bit<64> clockId, in bit<16> portId, 

in bit<16> seqId, out bit<64> tx_tstamp); 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  44 

 

Listing 16: P4-Implementation Workflow of Transparence Clock. 

We embed custom telemetry data in PTPv2 extension TLV fields. This method minimizes overhead by 

avoiding additional probe packets and leverages the existing PTP network infrastructure for efficient 

telemetry collection. 

The structure of an extension TLV field to carry INT data used in Listing 16 is detailed as below:  

• tlvType: a configurable, unique identifier. 

if (hdr.ptp.isValid()) { 
    // if we see a sync or delay_req message 
    // Step 0: capture ingress and egress timestamps 
    if (hdr.ptp.messageType == PTP_MSG_SYNC 

|| hdr.ptp.messageType == PTP_MSG_DELAY_REQUEST) { 
        // remember its arrival time 
        ptp_store_ingress_mac_tstamp(hdr.ptp.clockId, hdr.ptp.portId, hdr.ptp.sequenceId); 
        // require capturing and store its departure time 
        ptp_capture_egress_mac_tstamp(hdr.ptp.clockId, hdr.ptp.portId, hdr.ptp.sequenceId); 
    } 
    // we see a follow_up or delay_response message 
    if (hdr.ptp.messageType == PTP_MSG_FOLLOW_UP 

|| hdr.ptp.messageType == PTP_MSG_DELAY_RESPONSE) { 
         // Step 1: get ingress and egress timestamps of the corresponding packet 
         // by default, we use the clockId and portId of the actual packet to correlate 
         clockId = hdr.ptp.clockId; 
         portId  = hdr.ptp.portId; 
 
         // in case of delay_res message, the master will report clockId and 
         //     portId of delay_req message at the end of Delay_res message. 
         // => delay_res message contains 2 clockId values: one belonged to master, 
         //     another (at the end of msg) belonged to the slave who requested 
         if (hdr.ptp.messageType == PTP_MSG_DELAY_RESPONSE) { 
             clockId = hdr.ptp_res.requestClockId; 
             portId   = hdr.ptp_res.requestPortId; 
         } 
         // get timestamps 
         ptp_get_ingress_mac_tstamp(clockId, portId, hdr.ptp.sequenceId, ingressNs); 
         ptp_get_egress_mac_tstamp(clockId, portId, hdr.ptp.sequenceId, egressNs); 
 
         // Step 2: add inband-network telemetry 
         hdr.ptp_int.setValid(); 
         hdr.ptp_int.tlvType        = PTP_TLV_INT_TYPE; 
         hdr.ptp_int.fieldLength    = PTP_TLV_INT_LENGTH; 
         hdr.ptp_int.switchId       = switchId; 
         hdr.ptp_int.ingressTstamp  = ingressNs; 
         hdr.ptp_int.egressTstamp   = egressNs; 
         hdr.ptp_int.correctionNs   = hdr.ptp.correctionNs; 
 
         // Step 3: update the correctionField to reflex the delay 
         correctionNs = egressNs - ingressNs; 
         // add delay of its sync message to the correctionField 
         // (currently we do not support subNano => no need to adjust this field) 
         hdr.ptp.correctionNs = hdr.ptp.correctionNs + (bit<48>)correctionNs; 
 
         // Step 4: update size of PTP message 
         // +4: 4 bytes of header (2bytes of tlvType + 2bytes of fieldLength 
         hdr.ptp.messageLength = hdr.ptp.messageLength + PTP_TLV_INT_LENGTH + 4; 
    } 
} 
 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  45 

• fieldLength: fixed at 26 bytes, ensuring each TC adds a 26-byte PTP. 

• switchID: a unique identifier assigned to each TC.  

• ingressTstamp & egressTstamp: the timestamps recorded at the ingress and egress of the 

packet. 

• correctionField: the value of the correctionField before the TC applied its adjustment. 

We show in Figure 22 a Wireshark representation of a Follow_Up message that has three TLV 

extensions to carry on INT data of three switches. 

 
Figure 22: Wireshark Dissector Representation of INT Encapsulation. 

4.2.3 INT Collector & TDA Detection  
We implemented a collector to capture, analyze, and provide real-time statistics on PTPv2 packets 

with INT extensions. The collector consists of two threads to perform two different tasks: 

• It first utilizes Scapy to sniff network traffic, parse PTP messages, including Sync, Follow_Up, 

Delay_Req, Delay_Resp, and extract timestamp data and telemetry fields. The script defines 

a custom PTP packet parser to interpret message types, timestamps, and TLV extensions, 

enabling accurate tracking of ingress and egress timestamps from TCs. The extracted data will 

then be used to detect time-delay attack (TDA) and to feed Grafana for a graphical 

representation. The TDA detection consists of two phases:  

• Learning phase: in this phase, we determine the time synchronization accuracy supported 

by the network. The duration of this phase is configured via the "--nb-learning-samples" 

parameter, which represents the number of INT messages. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  46 

• Monitoring phase: in this phase, we monitor the delay variation to detect TDA. The 

sensitive detection is configured via the "--sigma" parameter. 

It then serves telemetry statistics through an HTTP server, allowing seamless integration with 

monitoring tools like Grafana.  

Figure 23 provides a graphical Grafana representation of monitoring for the last 20 PTP messages in a 

time synchronization process consisting of a PTP client and server, and three TCs. The left side of the 

figure displays Sync messages, while the right side shows Delay_Req messages. The x-axis in each chart 

represents the sequence number of the messages. 

In the first row, two charts illustrate the Inter-Arrival Time (IAT) variations of messages at both the 

server and each TC. The interval between consecutive Sync messages is consistently close to one 

second. Interestingly, Delay_Req messages generated by the LinuxPTP-based client exhibit variations 

ranging between 0 and 2logMinDelayReqInterval+1 =  2 seconds, as detailed in Section 9.5.11.2 of 

[IEEE1588-2019]. Despite this variation, the IAT values observed at each monitored TC closely align 

with those recorded at the server, indicating consistent propagation behavior across the network. 

The second-row charts depict the difference between the IAT values at each TC and those recorded at 

the server. These differences help identify deviations that may indicate potential TDAs. 

The final row contains two charts: the left chart displays the arrival time of Sync packets at each TC, 

while the right chart shows the departure time of Delay_Req packets. Although the TCs may not be 

synchronized, these charts provide insight into packet propagation delays between them.  

 
Figure 23: PTP monitoring. 



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  47 

5 Conclusion and Future Work 
In this digest, we provided an overview of the latest enhancements of our open-source validation 

tools, including the following: 

1. A description of the new architecture of the 6GDetCom Simulator, as well as newly added 

concepts such as replaying delay traces, a Packet Delay Correction (PDC) simulation model, 

enhancements for the simulation of time synchronization, and network control plane 

interfaces supporting the simulation of dynamic scenarios. For all features, we provided an 

exemplary showcase to allow users to quickly understand and explore the features of the 

framework. 

2. The introduction of our novel 6GDetCom Emulator which enables the analysis of applications 

under the influence of the characteristic PD of 6G bridges without the need for dedicated 

5G/6G hardware. This included an analysis of the capabilities and limitations of this emulator. 

3. An emulation framework for secure PTP time synchronization allowing monitoring, 

detection, and localization of Time-Delay Attack (TDA) using a Mininet-based approach. 

Throughout the project, the presented simulation and emulation frameworks already turned out to 

be useful for the validation of concepts developed in the Deterministic6G project, for instance, to 

validate wireless-friendly scheduling methods [DET24-D34], PDC mechanisms [DET23-D21, DET25-

D23], time-synchronization mechanisms [DET23-D22, DET25-D24], or Time-Delay Attacks [DET25-

D24]. Final validation results will be presented in Deliverable D4.5, which is dedicated to the final 

validation results.  

  



 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  48 

Reference 
[3GPP-TS22104] 3GPP, “TS 22.104: Service requirements for cyber-physical control 

applications in vertical domains”, Release-18, v18.0.0, 2021 
[CM+10] R. Cochran and C. Marinescu, “Design and implementation of a PTP 

clock infrastructure for the Linux kernel,” in Proc. of ISPCS, pp. 116– 
121, IEEE, Sept. 2010 

[Coc25] Richard Cochran, “User space PTP stack for the GNU/Linux operating 
system”, https://github.com/richardcochran/linuxptp, last accessed 
April, 2025 

[DET23-D11] DETERMINISTIC6G, Deliverable 1.1, DETERMINISTIC6G Use Cases and 
Architecture Principles, June 2023 

[DET23-D21] DETERMINISTIC6G, Deliverable 2.1, First report on 6G centric enabler, 
Dec. 2023 

[DET23-D22] DETERMINISTIC6G, Deliverable 2.2, First report on time synchronization 
for E2E time awareness, Dec. 2023 

[DET25-D23] DETERMINISTIC6G, Deliverable 2.3, Second report on 6G centric 
enablers, Apr. 2025 

[DET25-D24] DETERMINISTIC6G, Deliverable 2.4, Report on the time synchronization 
for E2E time awareness, Apr. 2025 

[DET23-D31] DETERMINISTIC6G, Deliverable 3.1, Report on 6G convergence enablers 
towards deterministic communication standards, Dec. 2023 

[DET23-D32] DETERMINISTIC6G, Deliverable 3.2, Report on the Security solutions, 
Dec. 2023 

[DET24-D34] DETERMINISTIC6G, Deliverable D3.4, Report on Optimized Deterministic 
End-to-End Schedules for Dynamic Systems , Jun. 2024 

[DET23-D41] DETERMINISTIC6G, Deliverable 4.1, DETERMINISTIC6G DetCom 
simulator framework release 1, Dec. 2023 

[DET24-D42] DETERMINISTIC6G, Deliverable 4.2, Latency measurement framework, 
March 2024 

[DET25-D43] DETERMINISTIC6G, Deliverable 4.3, Latency measurement data and 
characterization of RAN latency from experimental trials, Apr. 2025 

[HDM+23] L. Haug, F. Dürr, S. S. Mostafavi, G. P. Sharma, J. Sachs, J. Harmatos, 
J. Costa-Requena, and J. Ansari, “Deterministic6g/deterministic6g_data: 
D4.1 - First DetCom simulator framework release (datasets),” Dec. 2023. 
[Online]. Available: https://doi.org/10.5281/zenodo.10405085 

[IEEE1588-2019] IEEE Standard 1588-2019, “IEEE Standard for a Precision Clock 
Synchronization Protocol for Networked Measurement and Control 
Systems,” tech. rep., 2020. (Revision of IEEE Std 1588-2008) 

[IEEE 802.1AS] IEEE, “IEEE Std 802.1AS-2020: IEEE standard for local and metropoli- 
tan area networks–timing and synchronization for time-sensitive appli- 
cations,” 2020 

[IEEE 802.1ASdm] IEEE, “IEEE Std 802.1ASdm-2024: IEEE standard for local and 
metropolitan area networks–timing and synchronization for time- 
sensitive applications amendment 3: Hot standby and clock drift error 
reduction,” 2024. 

[INE25] INET Framework (website), https://inet.omnetpp.org/, last accessed 
April, 2025 

https://github.com/richardcochran/linuxptp
https://inet.omnetpp.org/


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  49 

[Lib25] Libnetconf2 contributor, “Libnetconf2 - The NETCONF protocol library”, 
https://github.com/CESNET/libnetconf2, last accessed April, 2025 

[OMN25] OMNeT++ Discrete Event Simulator (website), https://omnetpp.org/, 
last accessed April, 2025 

[RFC6241] R. Enns, M. Björklund, A. Bierman, J. Schönwälder, “Network 
Configuration Protocol (NETCONF)“, https://www.rfc-
editor.org/info/rfc6241 

[Sys25] Sysrepo, “Sysrepo - Storing and managing YANG-based configurations 
for UNIX/Linux applications”, https://www.sysrepo.org/, last accessed 
April, 2025 

 

https://github.com/CESNET/libnetconf2
https://omnetpp.org/
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://www.sysrepo.org/


 
Document: Digest on Second 6GDetCom Simulator & Emulator 
Release 

 Version: v1.0 
Date: 30-04-2025 

Dissemination level: Public 
Status: Draft 

 
 

101096504  DETERMINISTIC6G  50 

List of abbreviations 
5G Fifth generation 

5GS  5G system 

6G Sixth generation 

BTCA Best timeTransmitter clock algorithm 

DS-TT Device side TSN translator 

E2E End-to-End 

GCL Gate Control List 

GM Grandmaster 

gNB Next generation NodeB 

gPTP generalized Precision Time Protocol 

INT In-band Network Telemetry 

HTTP HyperText Transfer Protocol 

NW-TT Network side TSN translator 

OC Ordinaire Clock 

P4 Programming Protocol-independent Packet Processor 

PD Packet Delay 

PDC Packet Delay Correction 

PDV Packet Delay Variation 

PTP Precision Time Protocol 

TAS Time-Aware Shaper (IEEE 802.1Qbv) 

TC Transparent Clock 

TDA Time-Delay Attack 

TLV Type-Length-Value 

tR time Receiver 

TSe Egress timestamp 

TSi Ingress timestamp 

TSN Time-sensitive Networking 

tT time Transmitter 

TT TSN Translator 

UDP User Datagram Protocol 

UPF User plane function 

Table 8: List of abbreviations 

 

 

 


