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Executive summary 
Wireless systems, such as 5G or 6G, are dynamic systems by nature. Firstly, packets experience a 

packet delay while passing through wireless network elements. In contrast to wired networks, this 

packet delay is stochastic with a relatively large packet delay variation. Moreover, this packet delay is 

not static but dynamic since it depends on many dynamic factors that influence the wireless 

transmission such as shadowing by obstacles, scattering and diffraction of the signal, multi-path 

propagation, fading, etc. On upper layers, these physical effects induce a dynamic bit error rate and 

frame error rate, which leads to a variable number of retransmissions. Therefore, the probability 

distribution of the stochastic packet delay is dynamic and might change its mean, variance, etc. 

Secondly, mobility of end stations intensifies these adverse effects, for instance, due to the 

requirement to change base stations. Again, this leads to dynamic packet delay distributions. Finally, 

the set of streams communicated between sender (i.e., talker in terms of Time Sensitive Networking) 

and receivers (i.e., listeners) is often dynamic. This means, new streams might be added or old streams 

might be removed at runtime. In particular, new streams to be added dynamically are challenging 

since this requires the adaptation of the network configuration such as end-to-end schedules to 

provide end-to-end delay guarantees. This adaptation must be carried out carefully, without violating 

the guarantees of already admitted streams.   

All these dynamic effects pose a big challenge for offering a dependable end-to-end communication 

service. In this report, we focus on 6G systems implemented as part of a TSN network which consists 

of wired and wireless bridges. A wireless bridge corresponds hereby to a 6G system (i.e. 6G network 

and 6G User Equipment (UE), which is in its entirety represented as a virtual TSN bridge, following the 

TSN integration model specified for 5G [DET23-D31, 3GPP24-23501]. Such virtual (wireless) TSN 

bridges we refer to as  6GDetCom nodes1. We focus on end-to-end scheduling of scheduled traffic 

according to the IEEE 802.1Qbv standard, which defines a time-driven scheduling mechanism, also 

known as time-aware shaping. Time-aware shaping requires the calculation of timetables (i.e., 

schedules) to control the forwarding of packets from egress queues of bridges. Since existing work 

does often not assume the dynamic effects mentioned above, the problem of calculating robust 

schedules and adapting schedules to these dynamic effects have not been considered in literature or 

only with a very limited scope such as dynamic stream sets.  

In this report, we present system mechanisms and algorithms for robust and adaptive end-to-end 

scheduling that can cope with the dynamic effects introduced above. In more detail, our main 

contributions include: 

• A YANG data model to describe dynamic stochastic packet delay. This model provides the 

essential information about packet delay to the Centralized Network Controller executing the 

algorithms for calculating and adapting end-to-end schedules. 

• Different approaches based on the NETCONF protocol and our YANG data model to trigger 

dynamic adaption of end-to-end schedules. This includes reactive approaches that “only” 

react to dynamic changes (break-before-make) and proactive approaches that utilize 

advanced prediction mechanisms for dynamic packet delay to implement a “make-before-

break” approach. 

 
1 While this report focuses on integrating a future 6G network into a TSN network, the approach is equally 
applicable to 5G systems. 
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• We show how to exploit the characteristics of a so-called wireless by-pass that takes 

advantage of the large reach of wireless links to optimize the network topology. 

• Different algorithms to calculate robust and adaptive end-to-end schedules for time-aware 

shaping. These algorithms enable the maximization of robustness to dynamic packet delay 

distributions to avoid the costly adaptation of schedules as long as possible, fast adaptation 

of existing schedules using highly optimized algorithms, and graceful degradation of 

guarantees provided by schedules under increasing packet delay.  
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1 Introduction 
This report describes system concepts and algorithms for planning end-to-end packet schedules for 

dependable end-to-end communication over networks that comprise wired and wireless network 

elements, including dynamic 5G/6G systems. In particular, we focus on dynamic Time-Sensitive 

Networking (TSN) systems including wireless bridges and wired bridges along the end-to-end 

communication path between applications (i.e., talkers and listeners), as well as on the adaptation of 

such systems. 

There are different reasons for such a TSN system including wired and wireless bridges to change 

dynamically and requiring end-to-end adaptation: 

• Dynamic stream sets: In many scenarios, it is unrealistic to assume that all streams between 

talkers and listeners are known a priori, i.e., at system design time, and do not change 

anymore at runtime. Dynamically adding new streams at runtime requires the adaptation 

of end-to-end schedules, which is also known as incremental scheduling since streams are 

added to the schedule incrementally. Such incremental changes must be made carefully in 

order not to violate the timing guarantees of already admitted streams. Moreover, 

schedules must be optimized to be extensible in the future.   

• Dynamic packet delay characteristics: The packet delay (PD) of wireless bridges is 

significantly greater than the PD of wired bridges and additionally has greater packet delay 

variation (PDV). The characteristics of PD can be modelled as non-stationary stochastic 

processes, i.e., parameters of the stochastic PD distribution such as mean or variance are 

not constant over time. Or in plain words: The characteristics of non-stationary PD 

distributions change dynamically over time. Therefore, we also refer to such PD 

distributions by the term dynamic PD distributions in the following to highlight the fact that 

their parameters are non-constant but dynamic. In order to provide dependable end-to-end 

communication from the TSN perspective at all times, end-to-end schedules must be 

adapted to these dynamically changing PD characteristics.   

• Mobility: End stations might be mobile. Although mobility is handled within the 5G/6G 

system and, therefore, transparent (i.e., not “visible”) to the TSN network, mobility might 

also cause PD distributions to change over time depending on the environment (e.g., 

obstacles, distance to base station, etc.). As described above for dynamic PD distributions, 

this requires the adaptation of end-to-end schedules.  

It is important to note that end-to-end adaptation of the TSN network is only one possibility of 

adaptation. Adaptation can also take place within the 5G/6G system (a wireless bridge), e.g., by 

resource allocation or scheduling of radio resources, i.e., by actively influencing the PD distributions 

instead of just taking PD distributions as input to the end-to-end scheduling problem in the TSN 

network. In fact, end-to-end adaptation is a relatively heavy-weight and complex (slow) process, 

potentially involving many TSN bridges along the end-to-end path and complex computational tasks 

for calculating end-to-end schedules, whereas the adaptation within the 5G/6G system is affecting 

only a wireless bridge. In fact, end-to-end adaptation and 5G/6G adaptation complement each other, 

ideally in a holistic approach. This report is only focused on the end-to-end adaptation of TSN 

schedules including wireless TSN bridges along the path. Adaptation within the 5G/6G system or a 

holistic approach integrating end-to-end and 5G/6G adaptation are beyond the scope of this report. 
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On the one hand, the goal of this report is to present system concepts that enable the adaptation of 

end-to-end schedules. This includes YANG data models and network control plane interfaces based 

on the NETCONF protocol for providing dynamic system information – in particular, dynamic packet 

delay distributions – to a logically centralized network controller performing reactive (when PD 

distributions have changed) or proactive (based on PD prediction) dynamic re-planning of schedules. 

Moreover, we describe how to exploit the characteristic properties of wireless communication (in 

particular its long reach) to implement a so-called wireless by-pass, which reduces the number of end-

to-end hops and simplifies the complex calculation of end-to-end schedules. Consequently, the 

wireless by-pass also simplifies adaption by reducing the time to adapt due to shorter times to 

calculate new end-to-end schedules.   

On the other hand, we present algorithms for (re-)planning end-to-end schedules targeting scheduled 

traffic according to IEEE 802.1Qbv. Different approaches will be presented for dealing with dynamic 

stream sets and dynamic packet delay predictions. These algorithms provide different interesting 

features such as maximizing robustness to dynamic PD distributions, fast rescheduling with dynamic 

PD distributions and dynamic stream sets, and graceful degradation under degraded channel 

conditions. 

For readers who are not familiar with the DETERMINISTIC6G project, we start with a brief general 

overview of the project to keep this document self-contained and set the stage for the presentation 

of the concepts for adaptive end-to-end scheduling. Readers who already know the DETERMINISTIC6G 

project could skip this sub-section and directly start with Section 0 motivating the need for adaptation 

to realize dependable end-to-end communication in dynamic systems. Afterwards, we described the 

relation to other work packages of the project, before giving an overview of the remainder of this 

document.    

1.1 DETERMINISTIC6G Approach 
Digital transformation of industries and society is resulting in the emergence of a larger family of time-

critical services with needs for high availability and which present unique requirements distinct from 

traditional Internet applications like video streaming or web browsing. Time-critical services are 

already known in industrial automation; for example, an industrial control application that might 

require an end-to-end “over the loop” (i.e., from the sensor to the controller back to the actuator) 

latency of 2 ms and with a communication service requirement of 99.9999 % [3GPP23-22261]. But 

with the increasing digitalization similar requirements are appearing in a growing number of new 

application domains, such as extended reality, autonomous vehicles, and adaptive manufacturing. The 

general long-term trend of digitalization leads towards a Cyber-Physical Continuum where the 

monitoring, control and maintenance functionality is moved from physical objects (like a robot, a 

machine, or a tablet device) to a compute platform at some other location, where a digital 

representation – or digital twin – of the object is operated. Such Cyber Physical System (CPS) 

applications need a frequent and consistent information exchange between the digital and physical 

twins. Several technology developments in the ICT-sector drive this transition. The proliferation of 

(edge-) cloud compute paradigms provide new cost-efficient and scalable computing capabilities, that 

are often more efficient to maintain and evolve compared to embedded compute solutions integrated 

into the physical objects. It also enables the creation of digital twins as a tool for advanced monitoring, 

prediction and automation of system components and improved coordination of systems of systems. 

New techniques based on Machine Learning can be applied in application design, that can operate 
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over large data sets and profit from scalable compute infrastructure. Offloading compute functionality 

can also reduce spatial footprint, weight, cost, and energy consumption of physical objects, which is 

in particular important for mobile components, like vehicles, mobile robots, or wearable devices. This 

approach leads to an increasing need for communication between physical and digital objects, and 

this communication can span over multiple communication and computational domains. 

Communication in this cyber-physical world often includes closed-loop control interactions which can 

have stringent end-to-end KPIs (e.g., minimum, and maximum packet delay) requirements over the 

entire loop. In addition, many operations may have high criticality, such as business-critical tasks or 

even safety relevant operations. Therefore, it is required to provide dependable time-critical 

communication which provides communication service-assurance to achieve the agreed service 

requirements.  

Time-critical communication has in the past been mainly prevalent in industrial automation scenarios 

with special compute hardware like Programmable Logic Controllers (PLC), and based on proprietary, 

mutually incompatible wired communication technologies, such as Powerlink and EtherCat, which is 

limited to local and isolated network domains and which is configured to the specific purpose of the 

local applications. With the standardization of TSN, and Deterministic Networking (DetNet), similar 

capabilities are being introduced into the Ethernet and IP networking technologies, which thereby 

provide a converged multi-service network allowing time critical applications in a managed network 

infrastructure allowing for consistent performance with zero packet loss and guaranteed low and 

bounded latency. The underlying principles are that the network elements (i.e. bridges or routers) and 

the PLCs can provide a consistent and known performance with negligible stochastic variation, which 

allows to manage the network configuration to the needs of time-critical applications with known 

traffic characteristics and requirements. Furthermore, using interchangeable TSN hardware 

components has economic benefits, avoids vendor lock-in and enables third-party support for 

configuration and troubleshooting. 

It turns out that several elements in the digitalization journey introduce characteristics that deviate 

from the assumptions that are considered as baseline in the planning of deterministic networks. There 

is often an assumption for compute and communication elements, and also applications, that any 

stochastic behavior can be minimized such that the time characteristics of the element can be clearly 

associated with tight minimum/maximum bounds. Cloud computing provides efficient scalable 

compute, but introduces uncertainty in execution times; wireless communications provides flexibility 

and simplicity, but with inherently stochastic components that lead to packet delay variations 

exceeding significantly those found in wired counterparts; and applications embrace novel 

technologies (e.g. ML-based or machine-vision-based control) where the traffic characteristics deviate 

from the strictly deterministic behavior of old-school control. In addition, there will be an increase in 

dynamic behavior where characteristics of applications, and network or compute elements may 

change over time in contrast to a static behavior that does not change during runtime. It turns out 

that these deviations of stochastic characteristics make traditional approaches to planning and 

configuration of end-to-end time-critical communication networks such as TSN or DetNet, fall short in 

their performance regarding service performance, scalability and efficiency. Instead, a revolutionary 

approach to the design, planning and operation of time-critical networks is needed that fully embraces 

the variability but also dynamic changes that come at the side of introducing wireless connectivity, 

cloud compute and application innovation. DETERMINISTIC6G has as objective to address these 
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challenges, including the planning of resource allocation for diverse time-critical services end-to-end 

over multiple domains, providing efficient resource usage and a scalable solution [SPS+23]. 

DETERMINISTIC6G takes a novel approach towards converged future infrastructures for scalable 

cyber-physical systems deployment. With respect to networked infrastructures, DETERMINISTIC6G 

advocates (I) the acceptance and integration of stochastic elements (like wireless links and 

computational elements) with respect to their stochastic behavior captured through either short-term 

or longer-term envelopes. Monitoring and prediction of KPIs, for instance latency or reliability, can be 

leveraged to make individual elements plannable despite a remaining stochastic variance. 

Nevertheless, system enhancements to mitigate stochastic variances in communication and compute 

elements are also developed. (II) Next, DETERMINISTIC6G attempts the management of the entire 

end-to-end interaction loop (e.g. the control loop) with the underlying stochastic characteristics, 

especially embracing the integration of compute elements. (III) Finally, due to unavoidable stochastic 

degradations of individual elements, DETERMINISTIC6G advocates allowing for adaptation between 

applications running over such converged and managed network infrastructures. The idea is to 

introduce flexibility in the application operation such that its requirements can be adjusted at runtime 

based on prevailing system conditions. This encompasses a larger set of application requirements that 

(a) can also accept stochastic end-to-end KPIs, and (b) that possibly can adapt end-to-end KPI 

requirements at run-time in harmonization with the networked infrastructure. DETERMINISTIC6G 

builds on a notion of time-awareness, by ensuring accurate and reliable time synchronicity while also 

ensuring security-by-design for such dependable time-critical communications. Generally, a notion of 

deterministic communication (where all behavior of network and compute nodes and applications is 

pre-determined) is extended towards dependable time-critical communication, where the focus is on 

ensuring that the communication (and compute) characteristics are managed in order to provide the 

KPIs and reliability levels that are required by the application. DETERMINISTIC6G facilitates 

architectures and algorithms for scalable and converged future network infrastructures that enable 

dependable time-critical communication end-to-end, across domains and including 6G. 

As mentioned above, the wireless systems that are considered in DETERMINISTIC6G have stochastic 

and dynamic behavior. To cope with these challenging properties, the system must be able to adapt. 

In this report, the focus is on the adaptation of end-to-end schedules according to the IEEE 802.1Qbv 

TSN standard [IEEE15-8021Qbv]. YANG data models are presented to describe and provide dynamic 

packet delay, which can be integrated into existing TSN standard YANG models. The NETCONF protocol 

is applied to transfer dynamic delay information from bridges and to trigger the adaptation of end-to-

end schedules reactively and proactively using packet delay prediction concepts from the project. We 

describe how to exploit the properties of wireless communication to implement a so-called wireless 

by-pass, which by-passes several wired hops, which also simplifies the complex task of end-to-end 

scheduling. Moreover, optimized algorithms are presented to calculate and adapt end-to-end 

schedules for dynamic stream sets and for dynamic PD distributions, which induce novel 

characteristics such as maximization of robustness to dynamic PD distributions, fast re-scheduling with 

dynamic PD distributions and stream sets, and graceful degradation under degraded channel 

conditions. 
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1.2 Background on Adaptation of End-to-End Scheduling 
As already mentioned above, there are different reasons for a TSN system consisting of wired and 

wireless bridges to change dynamically and requiring the adaptation of end-to-end scheduling. One 

reason is the need to dynamically add or delete streams between talkers and listeners. For instance, 

the popular “plug & produce” paradigm envisions that network entities (i.e., individual device, 

machine modules, or whole machines) acting as talkers and listeners, can be added or removed 

dynamically at runtime to a factory shop floor. These network entities should be integrated 

automatically into the system when connected (“plugged in”) without interrupting the production 

process, i.e., without first stopping, then reconfiguring, and finally restarting the system. Instead, the 

system must be reconfigured “on-the-fly” without stopping on-going communication and services. 

From a TSN perspective aiming for dependable real-time guarantees such as meeting deadlines 

reliably, this means that schedules at bridges controlling the timely forwarding of real-time traffic 

need to be adapted and deployed at runtime. So-called incremental scheduling approaches deal with 

the problem of incrementally admitting new streams and adapting an existing schedule to 

accommodate new streams (or remove old streams) without compromising the timing guarantees for 

already admitted streams. The incremental scheduling problem has already received some attention 

from industry and the research community in the field of TSN (see Section 3.2 for an overview of 

related work). However, we will revisit this general problem in this report in the light of the specific 

properties of wireless TSN systems, in particular, probabilistic PDs, requiring robust incremental 

scheduling that can deal with uncertainty.  

Another reason requiring adaptation, specifically in TSN networks including wireless bridges, is 

dynamic PD distributions. In wireless systems, packet delay follows a stochastic PD distribution. 

Typically, the PD distribution of wireless bridges has a significantly greater packet delay variation (PDV) 

and is heavy-tailed, i.e., relatively large PD values overshadow other sources of uncertainty in wired 

systems, where the probability values of the tail of the distribution might decrease exponentially. 

Additionally, the PD distribution might change dynamically depending on the physical environment 

causing adverse effects such as shadowing, reflection, diffraction, scattering, and slow fading of the 

physical signal. The dynamic quality of the physical signal influences properties such as the bit error 

rate and frame error rate, which in turn affect other mechanisms on higher layers such as the required 

number of retransmissions to correctly receive a frame eventually. Altogether, this will manifest itself 

in variable packet delay. Consequently, we cannot assume that the PD distribution is static. This has a 

great impact onto end-to-end scheduling, which should ensure dependable communication in any 

case. To deal with dynamic changes in PD distributions, we need several steps: 

• First of all, the entity calculating end-to-end schedules must be made aware of the stochastic 

PDs. According to one common model of network configuration in TSN, we assume that a 

Centralized Network Controller (CNC) is in charge of calculating end-to-end schedules and 

configuring all bridges along the path, based on a global view onto the network and streams. 

To communicate stochastic PD information from bridges to the CNC, extended data models 

are required beyond what has so far been defined in standards to model static worst-case 

delay. To this end, we design and present extended YANG data models for describing PD. 

Moreover, we present how this information can be transmitted over the standard NETCONF 

protocol from bridges to CNC, either using query mechanisms or event-based communication. 
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• Secondly, new algorithms for re-planning schedules based on the provided PD distributions 

are required. This dynamic re-planning of schedules is a big challenge since calculating 

schedules is, from a mathematical perspective, a very complex task, formally, often an NP-

hard problem. Therefore, theoretically well-founded approaches are required to quickly 

generate new schedules in time. Furthermore, prediction approaches for stochastic PDs are 

very useful since they can trigger proactive schedule re-planning (make before break) instead 

of reacting when the old schedule is already compromised (break before make). Moreover, 

we present a scheduling approach that allows for quickly calculating new schedules based on 

an old schedule (instead of starting from scratch) and that gracefully degrades the streams’ 

timeliness and reliability guarantees for worsening channel conditions instead of steeply 

dropping to no guarantees.  

Finally, we also consider how to exploit the characteristic properties of wireless communication to 

implement a so-called wireless by-pass. Due to the long reach of 6G networks, many wired hops can 

be by-passed. The reduced number of hops simplifies end-to-end scheduling and, in turn, also allows 

for faster adaptation due to a reduced time to calculate new end-to-end schedules. 

1.3 Contributions of the Report 
The overarching goal of this report is to present system concepts and algorithms to support 

dependable end-to-end communication in mixed wired-wireless Time-Sensitive Networks that include 

dynamic wireless (5G/6G) systems. In particular, we consider traffic scheduled according to IEEE 

802.1Qbv (time-triggered traffic aka time-aware shaping) and the planning of schedules to cope with 

dynamic stream sets, dynamic PD distributions, and mobility. 

In more detail, we make the following contributions: 

• YANG data models to describe PD as enabler for dynamic adaptation to PD. These models can 

be considered an extension to the existing standard TSN models for static, deterministically 

bounded delay as defined in [IEEE18-8021Qcc]. The new extended model is sufficiently flexible 

to describe a spectrum of packet delay definitions, ranging from the classic deterministically 

bounded PD to histograms of probability distributions derived from runtime PD 

measurements or PD predictions. 

• Concepts for reactive (“break-before-make”) and proactive (“make-before-break”) 

adaptation of end-to-end schedules, which are based on the standard NETCONF protocol to 

either query (poll) dynamic PD distributions by the CNC or use the publish/subscribe paradigm 

to inform the CNC (YANG Push). Moreover, we show how to integrate PD prediction to 

proactively trigger the adaptation of schedules. Basing these approaches on YANG and 

NETCONF facilitates the later integration with existing standard TSN models and mechanisms.  

• A set of novel algorithms for planning IEEE 802.1Qbv schedules for dynamic systems including 

dynamic stream sets, dynamic PD distributions, and mobility. Depending on the algorithm, 

these algorithms support the maximization of reliability for dynamic PD distributions, fast (re-

)planning for dynamic PD distributions and stream sets, and graceful degradation of the 

streams’ timeliness guarantees for worsening channel conditions. 

• A new wireless by-pass network architecture with wireless connectivity and optional 

cloudification of industrial controllers that results in enhanced path redundancy, in improved 

schedulability, and in additional flexibility to the network operator. 
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1.4 Relation to Other Work Packages  
The approaches presented in this report have been designed in WP3 and have several relations to 

other work packages and deliverables (see Figure 1): 

• WP1: The system concepts presented in this report are based on the use cases and 

architecture designed in WP1 and presented in deliverable D1.1 DETERMINISTIC6G Use Cases 

and Architecture Principles [DET23-D11] and deliverable D1.2 First Report on 

DETERMINISTIC6G Architecture [DET24-D12], respectively. 

• WP2: The approaches for proactive schedule adaptation rely on the prediction of the PD as 

designed in WP2 and presented in deliverable D2.1 First Report on 6G Centric Enabler [DET23-

D21]. In general, the stochastic delay characteristics of a mobile network as shown in 

[MTS+24] have a great impact onto end-to-end scheduling and require new algorithms to 

calculate robust schedules. The approaches for adapting end-to-end schedules are also 

related to the orthogonal approach of Packet Delay Correction (PDC) developed in WP2, which 

aims for reducing the variation of packet delay (PDV). Reduced PDV simplifies the calculation 

of end-to-end schedules in general and can be combined with the end-to-end scheduling 

methods discussed in this report, which can deal with PDV.   

• WP4: PD distributions are the foundation for calculating robust schedules coping with 

stochastic PDs. PD distributions have been provided by the latency measurement framework 

designed in WP4 and described in D4.2 Latency Measurement Framework [DET24-D42] and 

[MNS+23, MSG23]. The validation of robust end-to-end scheduling concepts is performed 

with the OMNeT++/INET-based network simulator developed in WP4 and described in 

deliverable D4.1 DETERMINISTIC6G DetCom Simulator Framework Release 1 [DET23-D41]. 

 

 

Figure 1: Relation to other work packages 
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1.5 Structure and Scope of the Document  
The rest of this report is structured as follows: 

Section 2 focuses on the system aspects of adapting end-to-end scheduling in dynamic systems. The 

dynamic re-planning of end-to-end schedules by the CNC relies on information from bridges, including 

the current or predicted PD. To describe this information, we present a YANG data model in this 

section for stochastic PD as well as different approaches to trigger adaptation reactively or proactively 

based on NETCONF protocol mechanisms. The complete YANG data model can be found in the 

Appendix of this report in Section 5.1 and the public project Github2. As another system aspect, we 

discuss implications of the wireless by-pass characteristic to enhance path redundancy and to improve 

schedulability.  

Section 3 focuses on the algorithmic aspects of end-to-end schedule adaptation. We present different 

algorithms for calculating and adapting time-triggered schedules according to IEEE 802.1Qbv. These 

algorithms target the different causes of dynamic changes, namely, dynamic stream sets, dynamic PD 

distributions, and mobility. They provide different features like maximizing reliability with dynamic PD 

distributions, fast re-scheduling, or smooth handovers of mobile stations with minimal disruption of 

the schedule.   

Section 4 concludes this report with a summary and outlook onto future work. 

2 Control Plane Interfaces and Data Models for Dynamic 

Adaptation 
In this section, we present the system aspects that enable the adaptation of end-to-end scheduling in 

a dynamic system. This includes three major parts: 

• Data models to describe the information required for dynamic adaptation. Here, we focus on 

the stochastic PD distributions of wireless TSN bridges, which are fundamentally different 

compared to their conventional wired counterparts. PDs of wireless bridges are stochastic in 

nature with large packet delay variation (PDV). In contrast, existing TSN data models focus on 

deterministically bounded static PDs. Therefore, we aim for a more flexible approach that 

incorporates stochastic PDs from fine-grained online measurements. As the modelling 

language, we use YANG similar to already existing standard by IEEE. 

• Approaches to report dynamically changing PD distributions to the CNC to trigger re-planning 

of end-to-end schedules. Here, we present reactive and proactive approaches based on the 

standard southbound NETCONF protocol often used between TSN bridges and CNC. To 

support proactive planning, we also present the integration of PD prediction mechanisms into 

the framework. 

• Utilizing the wireless by-pass characteristic to enhance path redundancy and reduce the 

number of end-to-end hops by by-passing multiple wired links. 

Next, we start by presenting the background and related work. Afterwards, we introduce our system 

model, before presenting the main contributions of this section, namely, the extended YANG data 

 
2 https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/ 

https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/
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model for PD distribution, reactive and proactive approaches to report dynamic PD distributions, and 

the wireless by-pass characteristic.  

2.1 Background and Related Work 
In this sub-section, we briefly describe the technical background and standards required to understand 

our contributions and serving as a starting point for our extensions. The two most important standard 

technologies used in this report are: (i) the YANG data modelling language to describe information 

provided by TSN bridges to the CNC and to configure the bridges by the CNC; (ii) the NETCONF protocol 

for exchanging information between the bridges and CNC in the network control plane. Therefore, we 

describe the main concepts of these technologies next. Please note that these brief introductions are 

not meant as YANG or NETCONF tutorial. They only serve the purpose to keep the document self-

contained and readable for the readers not already familiar with YANG or NETCONF.   

2.1.1 YANG Data Modelling Language 
The YANG data modelling language is an IETF standard defined in [IETF16-RFC7950] to specify how 

configuration data and state data of network elements – in our case, TSN bridges – is represented and 

accessed. YANG data models are used by network configuration protocols such as NETCONF (as 

described in the next sub-section), RESTCONF, or the Constrained Application Protocol (CoAP) to read 

and write data from respectively to network elements. Due to the hierarchical structure of YANG data 

models, YANG data model instances can be encoded to other hierarchical representations such as the 

eXtensible Markup Language (XML) or Java Script Object Notation (JSON). In fact, NETCONF uses XML 

documents to encode YANG data trees, therefore, we also often use XML documents as examples in 

this report since most readers might be familiar with XML. 

First of all, it is important to distinguish between so-called configuration data and state data. 

Configuration data is readable and writeable model data, whereas state data is only readable. The 

idea is that configuration data can be set by an external network controller to change the configuration 

of a network element, whereas state data provides state information to network control that cannot 

be altered by other entities.  

YANG comes with several built-in data types such as strings, integer numbers with 8, 16, 32, and 64 

bits, boolean, enumerations, etc., from which other data types can be derived.  

YANG data models are hierarchical consisting of parent-child relationships between data nodes. The 

container keyword is used to define a parent node containing further child nodes in its subtree. A 

leaf node has no further child nodes but defines a value. An important modelling concept that we later 

use are lists of nodes. List nodes can have unique keys specified by the key keyword. A key can also 

consist of multiple values.  

Nodes can also be grouped together using so-called groupings. In contrast to a container, a grouping 

is just a shorthand notation to insert a set of nodes at other places with the uses statement. A 

grouping does not define a parent-child relationship.   

The config keyword distinguishes configuration data (read/write) from state data (read-only) 

nodes. Declaring a data node as config = true declares configuration data; config = false 

declares a node as state data node.  
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A node from an existing YANG data model can be extended by further nodes or a complete sub-

hierarchy using the augment keyword. 

Besides defining data models for configuration and state data, YANG data models can also include the 

specification of Remote Procedure Calls (RPC), i.e., functions to be executed on a remote network 

element. Closely related to RPCs are so-called actions. The difference between RPCs and actions is 

that actions are connected to certain containers or list data nodes in the tree, i.e., the action is 

executed on these nodes. NETCONF already defines several operations for retrieving state information 

or changing the configuration of network elements as discussed in the next sub-section. Since we do 

not introduce our own RPCs beyond what is already available with NETCONF, we do not further 

describe the definition of RPCs in YANG data models and explain standard RPCs together with 

NETCONF below. 

Also, notifications can be defined with YANG. Similar to actions, notifications can be connected to data 

nodes (containers, list data nodes).  

2.1.2 NETCONF Protocol 
The Network Configuration Protocol (NETCONF) is a management protocol to manipulate the 

configuration of network devices. It is used to retrieve state data or manipulate configuration data of 

network devices. It goes hand in hand with the YANG standard as already described above: YANG is 

used to define the data model of state data (read-only) and configuration data (read-write), which is 

encoded into XML documents to be transported through NETCONF. To this end, NETCONF also defines 

the operations to make requests to network elements. In terms of the centralized network control 

paradigm, NETCONF can be considered a southbound protocol between the centralized network 

controller (CNC in TSN) and bridges to let the network controller control the operation of bridges. In 

our context, the manipulation of the schedule (gate control list) of TSN bridges supporting scheduled 

traffic according to IEEE 802.1Qbv [IEEE15-8021Qbv] and retrieving the port-to-port delay of bridges 

are two important examples of bridge data to be configured or retrieved, respectively. 

Figure 2 shows the NETCONF protocol layers as defined in RFC 6241 [IETF11-RFC6241]. The NETCONF 

client (client for short) connects to the NETCONF server (server for short) via the reliable Transport 

Control Protocol (TCP). The server shares its configuration data. In our context, the TSN bridge acts as 

server. Confidentiality, authenticity, and integrity of messages sent between client and server are 

ensured using, for instance, Transport Layer Security (TLS) [IETF99-RFC2246, IETF11-RFC6101] or the 

Secure Shell protocol (SSH) [IETF06-RFC4253] running over TCP.  NETCONF uses Remote Procedure 

Calls (RPC), also encoded into XML, for retrieving and editing configuration data by invoking operations 

on the server side. For instance, the edit-config operation is used to change configuration data 

of the server. Besides request/response communication, NETCONF also supports event-based 

communication by sending notifications from the server to the client. Such event-based 

communication will show to be useful later in the context of adaptation, to report dynamic network 

state information from the wireless TSN bridge (6GDetCom node) to the CNC for triggering schedule 

adaptation. 
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         Layer                 Example 

    +-------------+      +-----------------+      +----------------+ 

    |   Content   |      |  Configuration  |      |  Notification  | 

    |             |      |      data       |      |      data      | 

    +-------------+      +-----------------+      +----------------+ 

           |                       |                      | 

    +-------------+      +-----------------+              | 

    | Operations  |      |  <edit-config>  |              | 

    |             |      |                 |              | 

    +-------------+      +-----------------+              | 

           |                       |                      | 

    +-------------+      +-----------------+      +----------------+ 

    |  Messages   |      |     <rpc>,      |      | <notification> | 

    |             |      |  <rpc-reply>    |      |                | 

    +-------------+      +-----------------+      +----------------+ 

           |                       |                      | 

    +-------------+      +-----------------------------------------+ 

    |   Secure    |      |  SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ... | 

    |  Transport  |      |                                         | 

    +-------------+      +-----------------------------------------+ 

 

Figure 2: NETCONF Protocol Layers [IETF11-RFC6241] 

As soon as the connection between client and server are established, client and server exchange so-

called hello messages to announce their supported NETCONF version, capabilities (operations 

beyond the base NETCONF operations), and supported YANG data models. This step is important since 

NETCONF is an extensible protocol, i.e., different client and server implementations might support 

different operations and different YANG data models. For instance, a TSN bridge that supports the 

IEEE 802.1Qbv standard implements a YANG data model to configure the gate control list, whereas a 

non-TSN bridge would not. 

NETCONF defines the concept of configuration data stores to hold configuration data that is required 

for the managed device for its operation. All devices must support a so-called running configuration 

data store containing the currently operational configuration but might support further configuration 

data stores. For instance, a candidate data store is often supported to first make changes to the 

candidate data store without affecting the running configuration, before committing the candidate 

configuration to the running configuration by invoking the commit operation. The candidate 

configuration can also be locked using the lock operation (followed later by an unlock operation), 

which can be useful to avoid inconsistencies when multiple sessions from different clients make 

changes concurrently to the data store – in general, a single edit-config operation is atomic, but 

with locking and unlocking, multiple edit-config operations can be isolated from other sets of 

concurrent edit-config operations. NETCONF even specifies a so-called confirmed-commit 

operation, which can be useful when updating several managed devices. A confirmed-commit 

first copies the candidate configuration to the running configuration, but rolls-back the changes if no 

commit operation follows within a timeout interval.   
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Every NETCONF device must support a set of base operations, from which we mention a few next to 

retrieve and change data. First of all, the get and get-config operations are used to retrieve data 

from the server. The difference is that get can be used to retrieve state and configuration data, 

whereas get-config only retrieves configuration data. Also a filter can be added, for instance, to 

only retrieve a sub-tree of the data tree as specified by the YANG data model. 

Configuration data can be changed with the edit-config operation to change parts of the data 

tree stored in a given configuration data store. The already introduced operations commit, lock, 

and unlock are used to commit changes to the running configuration, and protect the edited data 

store from concurrent editing, respectively.  

With these operations, we can already retrieve data from a data store and also change data using the 

request/response type of communication, where the client sends requests (operations via RPC calls) 

to the server, and the server responds. However, if data is dynamic, such a request/response 

communication is cumbersome and not very efficient since new data has to be polled by repeated 

requests to the server. In such a situation, event-based communication is an alternative type of 

communication, where the server sends notifications to the client instead of waiting for requests from 

the client. NETCONF also supports event-based communication sending such notifications as shown 

in Figure 2.  

There are several RFCs related to notifications in NETCONF. In the following, we refer to concepts 

described in RFC 8639 [IETF19-RFC8639], which describes how to subscribe to and receive 

notifications; RFC 8641 [IETF19-RFC8641], which build on RFC 8639 and describes how to subscribe to 

updates from a YANG data store (YANG Push); RFC 8641 [IETF19-RFC8641], which in turn builds on the 

other two RFCs, and describes dynamic subscriptions to YANG events and data stores over NETCONF.  

To subscribe to notifications, two types of subscriptions can be distinguished: dynamic subscriptions 

and configured subscriptions [IETF19-RFC8639]. For dynamic subscriptions, the subscriber subscribes 

to notifications using NETCONF RPCs. If the (SSH/TCP) session is terminated, subscriptions established 

in this session are also automatically terminated. In more detail, the following RPC operations are used 

to manage dynamic subscriptions, whose meaning is clear from their names: establish-

subscription, modify-subscription, delete-subscription, kill-

subscription. Dynamic subscriptions are a mandatory feature. In contrast, configured 

subscriptions are an optional feature. Such subscriptions are set up by modifying the configuration of 

the publisher. They persist across sessions and reboots, as long as the configuration persists. 

Notifications can also be sent to multiple subscribers.  

Further, according to YANG Push, we can distinguish between periodic subscriptions and 

on-change subscriptions.  Periodic subscriptions send notifications periodically according to 

some given time interval. Compared to periodically polling information from the data store, they save 

the request since data is automatically pushed to the subscriber periodically. On-change-subscriptions 

push updated to the subscriber only when values have actually changed. 

Subscriptions also need to define, which parts of a data store are subject to subscriptions to only 

receive notifications about relevant updates. YANG Push defines two different types of selection 

filters: sub-tree selection filters and XPath selection filters. A sub-tree filter selects a sub-tree of the 

data store similar to what can be done with sub-tree filters for get operations as introduced above.  
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XPath filters use the XPath query language from XML [W3C99-XPath], which defines more powerful 

concepts to select nodes in an XML tree such as predicates (e.g. sub-string matching), parent-child 

relationships, etc.  

2.1.3 Related Existing YANG Data Models 
One goal of this report is to define new YANG data models to model the information required from 

TSN bridges (in particular, wireless bridges/6GDetCom nodes) to calculate robust end-to-end 

schedules for time-triggered scheduling (IEEE 802.1Qbv) and to adapt end-to-end schedules to 

dynamic situations. As we see later in detail, the essential information is the characteristic port-to-

port delay of wireless bridges. The standard IEEE 802.1Qcc [IEEE18-8021Qcc] already defines the so-

called bridge delay, which we introduce next as related work to discuss the differences to our model 

presented below and motivate the need for a new model.  

IEEE Std 802.1Qcc defines bridge delay as the delay that packets experience when passing through the 

bridge. Individual delays can be defined per (port-pair, traffic class) tuple, where traffic class is a value 

from 0 to 7 as can be derived from the 3-bit Priority Code Point (PCP) of a VLAN tagged Ethernet frame. 

The bridge delay explicitly excludes the delay for transmission selection. That is, delay is defined as if 

queues were empty, the traffic class is permitted to transmit, and the egress port is idle. In other 

words, queuing delay, which is controlled by scheduling (e.g., the gating mechanism in IEEE 802.1Qbv), 

is excluded from the bridge delay. These definitions and assumptions are all consistent with our 

assumptions. In Section 2.3, we also define our so-called port-to-port delay per port-pair and traffic 

class and explicitly exclude queuing delay since the port-to-port delay should serve as input parameter 

to calculate robust and adaptive IEEE 802.1Qbv schedules, which essentially controls the queuing 

delay. 

The standard also specifies that delays are defined as worst-case ranges between a minimum delay 

value to a maximum delay value. That is, delay is deterministically bounded. As becomes clear later, 

we will extend this notion of deterministic worst-case delay by allowing for the definition of stochastic 

delay distributions (histograms) to model the characteristic port-to-port delay of wireless bridges.  

Moreover, the standard states explicitly that these values (ranges) are not measured, although delays 

could differ for different configurations of a bridge. Then the delay for the current configuration of the 

bridge is provided. This is another major difference to our assumptions. We assume that the delay 

distribution is dynamic and values might change over time significantly. To determine the current 

delay – or, if delay prediction is used, the future delay – of a wireless bridge, our port-to-port delay is 

measured and observed online or predicted using data-driven prediction algorithms based on 

observed data.  

The standard further distinguishes between independent delay and dependent delay. Independent 

delay is defined as independent of frame length, whereas dependent delay is dependent on frame 

length. Min/max. values are provided for both, dependent and independent delay. We realize that, in 

our system, delay may depend on more than just frame length (and traffic class). Therefore, we extend 

the notion of dependent delay by introducing a generic concept to define dependencies for port-to-

port delay. For each dependency, we can report an individual port-to-port delay distribution 

(histogram).    
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In summary, our extended models for port-to-port delay embrace the given notion of bridge delay 

and extend it in different ways to allows for a fine-grained definition of dynamic, stochastic, and 

dependent port-to-port delay. 

2.2 System Model 
In this section, we present our system model including the system components and our assumptions, 

which are the basis for dynamic adaptations. Our system model is shown in Figure 3. We consider 

networks where wired IEEE 802 TSN bridges coexist with wireless TSN bridges called 6GDetCom nodes. 

This system model follows the fully centralized model of IEEE 802.1Q with a (logically) centralized 

network controller (CNC) in the network control plane controlling the TSN bridges implementing the 

network data plane, based on a global view onto the network. Bridges expose their state and 

configuration information to the CNC via the standard NETCONF protocol, and the CNC uses NETCONF 

to change the configuration of bridges. YANG data models are used to describe the state and 

configuration information of bridges. As detailed in the next section, we can utilize NETCONF 

request/response and pub/sub (YANG Push) mechanisms to update the global view onto the dynamic 

network state and trigger adaptation of end-to-end schedules.  

 

Figure 3: Overview of the system components and their interaction with our end-to-end scheduler design 

In particular, we assume that bridges provide information about the port-to-port delay between 

ingress and egress ports to the CNC. The port-to-port delay can either be defined by static worst-case 

bounds through standard models as defined in [IEEE18-8021Qcc]. In particular, wired bridges or in 

general bridges whose port-to-port delay has very low variability over time and tight deterministic 

bounds can use existing standard YANG data models to this end. However, we also consider bridges 

where (a) the port-to-port delay has large variation following a stochastic distribution, or (b) the 

stochastic delay distribution is non-stationary with non-constant (dynamic) parameters, where PD 

measurements and predictions are only valid for a limited time span. Typically, this applies to wireless 
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bridges due to their characteristic PD. We will later present a YANG data model to describe such 

stochastic port-to-port delay and NETCONF-based mechanisms to update information of the dynamic 

delay distributions at the CNC in Section 2.3 and Section 2.5, respectively.  

Figure 4 shows more details about the inner structure of a 6GDetCom node with three interfaces in 

this example. Between the ports of a 6GDetCom node, we have a wireless link between UE and gNB 

in the 5G system. This leads to a stochastic port-to-port packet delay between the ports of the 

6GDetCom node. This port-to-port delay is modelled as histograms as described above for our YANG 

data model. The port-to-port delay and all other state and configuration data can be accessed through 

YANG data models via the NETCONF protocol as also already described above. In Section 3, we present 

algorithms for planning and adapting end-to-end schedules to these dynamic PD distributions.   

 

 

Figure 4: System model of a 6GDetCom Node 

Beyond information about the individual dynamic PD distributions of bridges, other context 

information might be relevant for dynamic adaptation, in particular, to trigger proactive adaptation 

based on predictions. For instance, information about the mobility of stations can be utilized to predict 

handovers between 6GDetCom nodes. Also, PD prediction mechanisms might benefit from global 

information about the network state and environment, e.g. path and speed of stations, number of 

stations in an area, physical obstacles, etc. As a generic concept to represent all such context 

information relevant for prediction and sub-sequent dynamic adaptation, we introduce digital twins 

(DT) in our model. By connecting DTs to the CNC, we can capture the context information in the control 

plane.  

In this work, we only consider time-triggered scheduling for scheduled traffic according to IEEE 

802.1Qbv [IEEE15-8021Qbv]. To this end, each bridge including 6GDetCom nodes implement the 

standard transmission gating mechanism, where each egress queue is controlled by a gate. These 

gates open and close according to a schedule implemented as a timetable, also called Gate Control 

List (GCL). That is, the GCL defines when which gates are open and closed, and when packets are 

eligible for transmission. By separating and directing traffic (i.e. TSN streams) to an appropriate egress 

queue, according to the application requirements for the TSN stream, and then controlling the gates 

for those queues, the CNC can control the bridge delay range perceived for this bridge for the different 
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TSN streams3 including the queuing delay of packets waiting for transmission. The scheduler 

component is responsible for calculating the GCL. We also assume the Per-Stream Filtering and 

Policing (PSFP) mechanism defined in IEEE 802.1Qci [IEEE17-8021Qci] is used. In more detail, we 

assume that so-called stream gates are applied before the egress queues to filter out packets arriving 

outside anticipated time intervals to isolate streams from each other and protect from too late or 

early packets of other streams. It will be the major task of the scheduling mechanisms presented later 

to calculate and adapt (re-calculate) the schedules for GCLs and stream gate configurations.    

To implement proactive adaptation schemes based on predictions for 6GDetCom nodes, we assume 

a prediction service that exposes one or more prediction states to the scheduler. Given a predicted 

state, the scheduler can query the predicted PD distribution for this state or get notified (i.e., pushed) 

PD distributions for certain states and then starts pre-calculating schedules with a certain lead time 

depending on the prediction time horizon. Note that schedule calculation is a complex computational 

task, and having a lead time to calculate schedules drastically increases the chance to have a schedule 

ready in time, i.e., before the state has actually changed. Depending on the implementation of the 

prediction service, it may only expose PD predictions based on the current state. A more sophisticated 

prediction service may also provide a set of the “most likely” future states. This way, the scheduler 

can proactively start its computation for each provided prediction state. 

The Centralized User Configuration (CUC) is used for the interaction between end stations and the 

CNC. To interact with the application layer, we consider a similar system model as [IEC/IEEE24-60802]. 

That is, each application specifies data objects that capture the required data exchange between 

different end devices, along with their reliability and punctuality requirements. The application 

requirements are forwarded and accumulated by a management middleware, allowing for a global 

view of the message streams at the CNC. During runtime, the management middleware can notify the 

scheduler of dynamically changing stream sets, where streams may join or leave the system. From an 

end-to-end scheduling perspective this means that already configured schedules (GCLs) at bridges 

need to be re-configured with new schedules including added streams and excluding removed 

streams. Or in other words: end-to-end scheduling needs to adapt to information about streams that 

was not available a priori, thus, a static schedule would not suffice in general. 

After the scheduler computed an eligible TSN configuration after a significant change of the state 

requiring new schedules, it notifies the management middleware with the corresponding stream 

objects. In a subsequent step, these stream objects are used to configure the bridges and the 

applications by configuring GCLs of bridges and, in case of isochronous traffic with applications 

synchronized to network time, the schedule of applications for transmitting packets.  

An important assumption with respect to station mobility is that mobility will be handled transparently 

and locally within the 5G/6G system in the 6GDetCom node, i.e., end-to-end paths do not change 

when UEs are handed over between base stations (gNB). From a (wireless) TSN bridge perspective, 

the ports do not change, when the UE moves, neither is the mobile station handed over to another 

bridge (6GDetCom node). The only effect that possibly becomes visible during a handover is a sudden 

change of the PD distribution, i.e., the port-to-port delay of the 6GDetCom node. Or in other words: 

mobility is just another cause for stochastic and dynamic PD distributions, which we anyway already 

 
3 By applying scheduling for traffic across all bridges of the network accordingly in a coordinated way, the end-
to-end latency (minimum and maximum) can be ensured by configuring an appropriate end-to-end schedule. 
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assume even if stations were completely stationary. Therefore, we do not present approaches for end-

to-end scheduling dedicated to mobility but handle it as part of scheduling for stochastic and dynamic 

PD distributions. 

In the following, we first present the YANG data models of 6GDetCom nodes for providing the data 

required for adapting end-to-end schedules to the scheduler. Afterwards, we describe in more detail 

the interaction between scheduler and bridges and between scheduler and applications, which is 

required for adaptation. 

2.3 YANG Data Models for Packet Delay 
To plan and adapt schedules to dynamic packet delay induced by 6GDetCom nodes, we must be able 

to model the characteristic port-to-port delay of such wireless bridges first. Then the algorithms for 

calculating wireless-friendly schedules can use this information as described in the next section to 

calculate robust schedules and adapt schedules to dynamic port-to-port delay. 

To model port-to-port delay, we define a new YANG data model with the following main features: 

• Fine-grained modelling of stochastic delay distributions. The granularity of the model can be 

adjusted and is sufficiently flexible to define probabilistic bounds (probability of delay values 

within a delay interval) as well as the classic worst-case deterministic bounds (min-max 

interval with 100 % probability) from IEEE Std 802.1Qcc [IEEE18-8021Qcc].  

• Independent and dependent delay distributions: Delay can be defined as independent, i.e., 

applying to all possible states. We also support a generic notion of dependent delays that are 

only applicable in certain states. The actual definition of “states” is deliberately kept generic 

such that PD distributions could depend on any relevant state. For instance, we could define 

different PD distributions for different frame sizes (frame length dependency), different 

physical speeds of end stations (mobility dependency), etc. Important for our algorithms for 

proactive schedule adaptation is mainly that we could calculate schedules for different 

possible future states proactively, and then switch to the corresponding schedule when the 

state occurs.  

• Validity period: Dynamic packet delay information might only be valid in a certain time frame. 

Therefore, we add the capability to optionally specify a period of validity. 

Here, we only present excerpts from our YANG data model to explain the essential concepts. The full 

YANG data model can be found in the Appendix of this report in Section 5.1 and in the public project 

Github4 

Consistent with IEEE Std 802.1Qcc [IEEE18-8021Qcc], we model port-to-port delay per port-pair/traffic 

class. Queuing delay (at the egress port) is explicitly excluded from the modelled port-to-port delay. 

This is also consistent with IEEE Std 802.1Qcc, which defines that bridge delay (as defined by this 

standard) is provided with zero delay for transmission selection at the egress port. Queuing delay (at 

the egress port) is controlled by scheduling, for instance, opening and closing gates according to a 

gate-control list. In contrast, the port-to-port delay modelled here is beyond the control of TSN 

scheduling. Therefore, the port-to-port delay is provided as if gates were open. The port-to-port delay  

 
4 https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/ 

https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/
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depends on the bridge characteristics for transferring packets from the ingress port to the egress port. 

In a 6GDetCom node this includes the 6G wireless transmission (see e.g. [DET23-D21]).  

The basic idea to flexibly model port-to-port delay is to use histograms as shown in Listing 1 in the 

histogram grouping of the YANG data module. The histogram consists of a number of bins as 

defined by bin-count. Bins can have different widths. If the first bin does not start at delay value 

zero, then the node start can be used to define the start of the first bin. The interval before this 

start value have probability zero. The node count defines the number of values within a bin. Note 

that count can also be translated to a relative frequency very easily if count is interpreted as 

numerator and the sum of all counts as denominator of the relative frequency. Histograms with bins 

and counters are also used for performance measurements for 5G network functions [3GPP24-28552], 

in particular, for delay measurements. If PD delay distributions are available already as continues 

probability density functions, for instance, as a result of delay predictions rather than measurements, 

they could be discretized to provide a histogram. The node tail can be used optionally to define 

how many values are in the tail of the distribution after the last given bin, which effectively defines a 

final bin reaching to infinity (unbounded delay distribution).  
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grouping delay-histogram { 

    description 

        "Delay histogram"; 

    leaf start { 

        type uint64; 

        description 

            "The start value of the first bin in nano-seconds. 

            If not specified, the first bin starts at 0."; 

    } 

    leaf bin-count { 

        type uint32; 

        mandatory true; 

        description "Number of bins."; 

    } 

    list bin { 

        description "Bins of histogram."; 

        key index; 

        leaf index { 

            type uint32; 

            mandatory true; 

            description "The index of this bin."; 

        } 

        leaf width { 

            type uint64; 

            mandatory true; 

            description 

                "The width of this bin in nano-seconds."; 

        } 

        leaf count { 

            type uint32; 

            mandatory true; 

            description "Count of values in this bin."; 

        } 

    } 

    leaf tail { 

        type uint32; 

        description 

            "Count of values in the tail of the histogram 

            after the upper bound of last bin until infinity. 

            Can be used to define an unbounded distribution."; 

    } 

} 

 

Listing 1: YANG data model – histogram 

This definition of histograms shows to be quite flexible when modelling port-to-port delay as 

demonstrated next. First, we can model the classic deterministic definition of delay as specified in  

IEEE Std 802.1Qcc [IEEE18-8021Qcc] as worst-case min/max bounds as shown in Listing 2 with a single 
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bin, assuming a minimum delay bound of 1 ms and maximum delay bound of 10 ms in this example. 

The count value can be set to any value greater than zero here since the total count of all bins summed 

up corresponds to 100 % probability in a histogram.   

<bin-count>1</bin-count> 

<!-- first bin starts at 1 ms --> 

<start>1000000</start> 

<bin> 

    <index>0</index> 

    <!-- 10 ms bin width--> 

    <width>10000000</width> 

    <count>1</count> 

</bin> 

 

Listing 2: Deterministic delay bounds 

A histogram with more bins is shown in Figure 5. This histogram is bounded on the right hand-side, 

i.e., 100 % of the values fall into the given bins. By adding a tail node, we could extend this 

distribution ad infinitum, i.e., less than 100 % of values are in the interval from zero up to the upper 

bound of the last specified bin, and the tail contains the rest of the values (unbounded distribution). 

 

Figure 5: Histograms for bounded (left) and unbounded (right) packet delays 

Next, we assign one or several histograms to a (ingress-port, egress-port, traffic-class, index) tuple as 

shown in Listing 3 by augmenting the standard bridge component node from the YANG module dot1q-

bridge.yang [IEC/IEEE24-60802]. This is also consistent with IEC/IEEE 60802, where dependent and 

independent delays are added below the bridge component node. The node port-to-port-

delays contains a list of port-to-port-delay nodes indexed by the combined key (ingress-

port, egress-port, traffic-class, index), which are all based on standard IEEE types. For instance, the 

traffic class is a number from 0 to 7, corresponding to the Priority Code Point (PCP) header field in the 

VLAN tag. Each port-to-port-delay node defines a histogram by using the delay-

histogram grouping presented above. Using the index node, we can assign multiple histograms 

per ingress-port, egress-port, traffic-class.  
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augment "/dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component" { 

    container port-to-port-delays { 

        config false; 

        list port-to-port-delay { 

        key "ingress-port egress-port traffic-class index"; 

        leaf ingress-port { 

            type dot1qtypes:port-number-type; 

            config false; 

            mandatory true; 

            description "Unique number of ingress port."; 

        } 

        leaf egress-port { 

            type dot1qtypes:port-number-type; 

            config false; 

            mandatory true; 

            description "Unique number of egress port."; 

        } 

        leaf traffic-class { 

            type dot1qtypes:traffic-class-type; 

            config false; 

            mandatory true; 

            description "Traffic class (0..7)"; 

        } 

        leaf index { 

            type uint16; 

            config false; 

            mandatory true; 

            description 

                "Index to define multiple histograms per port-pair 

                and traffic class."; 

        } 

        uses delay-histogram; 

    } 

    container validity-period { 

        container valid-from { 

            description 

                "Given delays are only valid at or after this 

                point in time, specified as PTP timestamp."; 

            uses ieee802:ptp-time-grouping; 

        } 

        container valid-until { 

            description 

                "Given delays are only valid until this 

                point in time, specified as PTP timestamp."; 

            uses ieee802:ptp-time-grouping; 

        } 

    } 
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    leaf dependency-class { 

        type enumeration { 

            enum "independent"; 

            enum "dependent"; 

        } 

        description 

            "Are the given delays only applicable under certain 

            conditions (e.g., for frames of certain length)?"; 

        } 

  

} 
 

Listing 3: Histograms assigned to (ingress-port, egress-port, traffic-class) 

Multiple histograms can be specified per port-pair/traffic-class to define independent and possibly 

multiple dependent port-to-port delay distributions as indicated by the node dependency-class. 

For instance, we can define an independent delay distribution and a frame-length-dependent delay 

distribution for the same port-pair/traffic-class combination. Beyond length dependencies, our YANG 

data model is generic and extensible to define arbitrary further dependencies in the future by defining 

custom dependencies as shown in Listing 4. Thus, depending on the state, individual delay 

distributions can be defined and communicated to the CNC to calculated state-dependent schedules. 

In particular, this facilitates proactive adaptation schemes by proactively calculating schedules for 

different (possible) future states and then use the schedule which matches the actual state.   

augment "/dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component/port-to-port-delays" { 

    when "dependency-class = 'dependent'"; 

    container dependencies { 

        container length-dependency { 

            leaf min-frame-length { 

                type uint32; 

                description 

                    "Values apply only to frames equal or greater 

                    than this value."; 

            } 

            leaf max-frame-length { 

                type uint32; 

                description 

                    "Values apply only to frames equal or smaller 

                    than this value."; 

            } 

        } 

    } 

} 
 

Listing 4: Extensible dependency model 



 
Document: Report on Optimized Deterministic End-to-End 
Schedules for Dynamic Systems 

 Version: v1.0 
Date: 27-06-2024 

Dissemination level: Public 
Status: Final 

 
 

101096504  DETERMINISTIC6G  30 

Finally, the node validity-period defines the time frame in which the given distribution is valid. 

Such a validity period is especially useful for dynamic systems where the delay distribution is expected 

to change (instead of the static distributions as defined currently in the IEEE standard). This facilitates 

querying new distributions latest when the old distributions become invalid to adapt the schedule or 

also in advance. If latency prediction concepts are used, one could even define a validity period 

starting in the future. For instance, if a mobile device is predicted to move around a corner in 5 s from 

the time of querying the delay distribution, the distribution could be marked as valid only in 5 s, when 

the delay distributions is expected to change.  

In summary, our YANG data model defines the schema shown as schema tree in Listing 5. 

module: port-to-port-delay 

  augment /dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component: 

    +--ro port-to-port-delays 

       +--ro port-to-port-delay*  

       |     [ingress-port egress-port traffic-class index] 

       |  +--ro ingress-port     dot1qtypes:port-number-type 

       |  +--ro egress-port      dot1qtypes:port-number-type 

       |  +--ro traffic-class    dot1qtypes:traffic-class-type 

       |  +--ro index            uint16 

       |  +--ro start?           uint64 

       |  +--ro bin-count        uint32 

       |  +--ro bin* [index] 

       |  |  +--ro index    uint32 

       |  |  +--ro width    uint64 

       |  |  +--ro count    uint32 

       |  +--ro tail?            uint32 

       +--ro dependency-class?     Enumeration 

       +--ro validity-period 

       |  +--ro valid-from 

       |  |  +--ro seconds?       uint64 

       |  |  +--ro nanoseconds?   uint32 

       |  +--ro valid-until 

       |     +--ro seconds?       uint64 

       |     +--ro nanoseconds?   uint32 

       +--ro dependencies 

          +--ro length-dependency 

             +--ro min-frame-length?   uint32 

             +--ro max-frame-length?   uint32 

 

Listing 5: Schema tree of port-to-port delay YANG data model  
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2.4 Interaction between Scheduler and Application 
In conventional settings, a scheduler has to be able to adapt TSN configurations to joining and leaving 

streams, i.e., adapt the schedule to dynamic stream sets. Moreover, the specific properties of our 

wireless system including, in particular, dynamic PD distributions might mandate further interaction 

between scheduler and application to deal with degrading system performance. In the following, we 

discuss coordination steps between scheduler and applications. 

2.4.1 Incremental Scheduling 
While the schedule can easily be adapted for leaving streams, joining streams may affect the ones that 

are already scheduled. As a consequence, a TSN scheduler middleware must perform an acceptance 

test to ensure that no reliability or punctuality guarantee is impaired by admitting additional streams.  

From the perspective of the TSN scheduler, the converged architecture of wireless and wireline 

communication offers novel possibilities for realizing such acceptance tests. On the more traditional 

side, joining streams can be accepted unconditionally; that is, by accepting a joining stream, the 

scheduler guarantees the application that its stream requirements are met under any circumstance 

with respect to the specified reliability. In comparison, a holistic design may conditionally accept 

joining streams, where the scheduler only provides reliability and punctuality guarantees for certain 

network and environmental conditions.  

To illustrate the impact of this design choice, we consider a simple realization of a conditional 

acceptance test in the following: On accepting a joining stream 𝑓, the TSN scheduler guarantees that 

it can meet 𝑓’s end-to-end latency guarantees with its required reliability as long as the TSN scheduler 

can guarantee the same for all streams with higher priorities. As a consequence, the scheduling 

middleware reserves the right to drop 𝑓 at a later point in time, e.g., if 

• another joining stream with higher priority requires additional resources, or if 

• the wireless channel quality degrades to a point where the schedule has to perform triage. 

2.4.2 Reaction to Degrading Application Performance 
Whereas dropping 𝑓 in the above cases can be quite drastic, an acceptance test may also specify a 

graceful degradation of 𝑓’s punctuality guarantees. Depending on the application, QoS degradations 

often appear more acceptable than arriving at a complete system halt. The following provides 

examples of possible tradeoffs that our scheduler design can offer to the application layer. 

On the one extreme, our scheduler can aim to uphold the streams’ reliability guarantees at the cost 

of introducing additional tardiness. For instance, when the scheduler can no longer guarantee that the 

stream 𝑓 is delivered within 10 𝑚𝑠 and a reliability of 99.99 %, it may prolong 𝑓’s acceptable end-to-

end latency to 15 𝑚𝑠 (assuming that this latency can be provided by  99.99 %). On the other extreme, 

our scheduler can enforce the streams’ punctuality requirements at the cost of impairing their 

reliability guarantees. For instance, 𝑓’s end-to-end latency stays at 10 𝑚𝑠 but its reliability degrades 

to below 99 %. As both extremes can result in unbalanced QoS guarantees, a hybrid combination is 

expected to result in better tradeoffs. 
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2.5 Interaction in Control Plane to Adapt to Dynamic Packet Delay 
Next, we consider the adaptation of end-to-end schedules to dynamic PD distributions, i.e., a change 

of the stochastic properties such as a shifted mean delay or changing PDV. This involves three major 

steps: 

1. Retrieving information about the (dynamic) PD distribution from the bridges or from the 

prediction service by the scheduler through the CNC. 

2. Calculating a new end-to-end schedule (GCLs for each bridge) by the scheduler. 

3. Pushing the new configuration (GCLs) to the bridges.  

For Step 1 and Step 3, we describe how to use standard NETCONF mechanisms and also discuss the 

implications for the scheduler. The YANG data models for describing PD communicated in Step 1 over 

NETCONF have already been presented in Section 2.3.  

Step 2 is the algorithmic part of adaptation, which is covered in detail in Section 3. 

We distinguish between two major approaches: 

• Reactive adaptation (“break-before-make”): The scheduler calculates (“makes”) a new 

schedule only after it is informed that the PD has actually changed. Since schedule calculation 

takes significant time, this means that the old schedule stays effective until a new schedule 

has been calculated, although the old schedule has not been calculated for the current 

situation (PD distribution). Consequently, until the new schedule is available, given guarantees 

(latency bounds and deadlines) might be violated (“break”). This problem is critical since 

schedule calculation is a complex computational task, and therefore, the transition period 

might be relatively long (several seconds at least even with optimized algorithms for 

calculating schedules).   

• Proactive adaptation (“make-before-break”): To tackle the obvious problem of reactive 

adaptation, proactive adaptation follows a “make-before-break” approach where schedules 

are calculated ahead of the time when they are actually needed and become effective. This 

obviously requires some PD prediction mechanisms to define when and how PD distributions 

change significantly in their characteristics like mean, variance, etc., which is a complex task 

on its own out of the scope of this report. PD prediction is considered in the DETERMINISTIC6G 

project [MNS+23] and it is subject to future work how to further enhance the prediction of PD 

for future states. In this report, we only provide an overview of PD prediction and focus on 

the implications for scheduling.  

We start by presenting the mechanisms for reactive schedule adaptation, before we consider 

proactive schedule adaptation.      

2.5.1 Reactive Schedule Adaptation 

Periodic Polling 

The straightforward approach to implement reactive adaptation is periodic polling of all bridges that 

are providing dynamic port-to-port delay information for the current distribution of the port-to-port 

delay (histogram as defined in Section 2.3). Bridges providing only static information on port-to-port 

delay such as static worst-case bounds obviously only need to be polled once since these values are 

never updated. Whether a bridge can provide dynamic port-to-port delay information would be 



 
Document: Report on Optimized Deterministic End-to-End 
Schedules for Dynamic Systems 

 Version: v1.0 
Date: 27-06-2024 

Dissemination level: Public 
Status: Final 

 
 

101096504  DETERMINISTIC6G  33 

advertised through capabilities in NETCONF, so the CNC can selectively poll bridges periodically that 

provide dynamic information. 

Figure 6 shows a periodic polling sequence with a given polling interval (we only show the sequence 

of actions here only for one bridge, but the same actions would be executed for each bridge providing 

dynamic information). With NETCONF and YANG, this can be implemented by calling the get 

operation on the port-to-port-delays node in the YANG data model defined above. After 

calculating the schedule, the bridges can be configured using the edit-config operation followed 

by a commit operation to configure the new gate parameters at the bridge including the so-called 

admin-control-list, which is the new configured GCL. The new admin control list becomes 

operational at the start of the next cycle (admin-base-time + n*admin-cycle-time for the 

smallest integer n such that the time is in the future). 

 

Figure 6: Sequence diagram – Periodic polling of PD and updating of bridges 

There are several problems and difficulties with this approach. The first problem is the time, say tcalc,  

that it takes to calculate the schedule, which is typically much longer than the rest of the interaction 

and can easily be several seconds even with fast heuristics to calculate schedules (see Section 3). If a 

new schedule is required – i.e., if the PD distribution changes significantly and polling starts 

immediately when the PD distribution changes –, then it will take at least tcalc to install a new schedule, 

i.e., the schedule is at least broken for period tcalc in this case – we call this the broken period in the 

following.  
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However, this is not even the worst case (longest duration) of the broken period. An old schedule 

might already become outdated without being noticed by the CNC before a new delay distribution is 

polled, i.e., during the current polling period before the next poll request, which further prolongs the 

broken period. In fact, the last polled PD distribution might already become outdated immediately 

after it is polled, and the new schedule is already broken, when it is installed. Then it takes another 

full polling period plus tcalc before a new schedule will be installed. And then the same situation might 

repeat again, and schedule adaptation lags behind forever with only broken schedules installed in the 

worst case.  

Clearly, if PD distributions can change any time, and tcalc is greater than zero, no update scheme can 

ever guarantee a lower bound on the broken period. However, polling introduces an artificial “dead 

time” equal to the polling interval plus tcalc before it can effectively react. So, one question is: Can we 

improve on the lower bounds of the broken period with another scheme? We will come back to this 

question later after having completely discussed the polling scheme. 

Other problems of the polling scheme are the selection of polling period and the induced overhead, 

which we discuss together next. Obviously, a long polling period leads to long broken time bounds but 

low communication overhead and load onto bridges, which need to process and respond to poll 

requests. A short polling interval leads to faster reaction times and high communication and 

processing overhead. A reasonable lower bound for the polling period would be the time to calculate 

a new schedule since it is not efficient to query for new delay values as long as the old values have not 

been processed into a new schedule. Using YANG Push, we can use periodic subscription as introduced 

above to let bridges report their current port-to-port delay periodically. If notifications from all bridges 

have been received (one round of updates is finished), the scheduler can be invoked. This saves the 

periodic get-requests from Figure 6; the response message become notifications as shown in Figure 

7. Besides this difference, the fundamental problems remain: How to reduce the influence of the 

polling period onto the broken period? How to choose the notification interval? These questions 

directly lead to an event-based communication approach, not based on periodic polling or periodic 

notifications, but based on actual changes of delay distributions, i.e., based on the delay 

characteristics, as discussed next.  
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Figure 7: Sequence diagram – Periodic subscriptions for reporting dynamic PD distributions and scheduling.  
For the sake of simplicity, the calls to establish subscriptions (operation establish-subscription) have 

been left out 

Event Notifications 

To eliminate the dead time caused by the polling period of the polling approach above, we now 

consider an event-based approach based on value changes (on-change subscriptions in YANG Push) 

rather than periodic updates. Whenever the port-to-port delay changes significantly, the scheduler is 

notified via the CNC as fast as possible. Figure 8 shows the sequence of actions of this approach. 

Although it looks similar to the periodic subscriptions above, the major difference is the missing 

notification period, which is replaced by a check for delay value changes at the bridge. 



 
Document: Report on Optimized Deterministic End-to-End 
Schedules for Dynamic Systems 

 Version: v1.0 
Date: 27-06-2024 

Dissemination level: Public 
Status: Final 

 
 

101096504  DETERMINISTIC6G  36 

 

Figure 8: Sequence diagram – Event-based updates of PD and schedule adaptation.  
For the sake of simplicity, the calls to establish subscriptions (operation establish-subscription) have 

been left out 

The upper bound of the broken time (time to react to a significant change of PD requiring a new 

schedule), is now dominated by the time tcalc required to calculate a new schedule, plus a minor delay 

to trigger and communicate the updated port-to-port delay to the CNC and push new schedules to the 

bridges.  

Since polling is not used anymore, also the problem of defining a suitable polling interval is solved. 

Instead, a new problem arises: Which delay value updates should be provided to the CNC? This 

question is directly related to the question, when is a change of PD significant to require a new 

schedule? A naive answer to the first question could be to simply send all changes to the CNC (send 

all updates, let the CNC sort it out). On the one hand, this does potentially induce big overhead, which 

could be saved by using YANG Push features. As mentioned above, XPath selection filters can be used 

on subscriptions to define filters on the YANG data model. XPath includes the possibility to define 

predicates on values, such as value > some other value. This would allow for what is also known in 

Publish/Subscribe as content-based filtering that the scheduler uses to specify thresholds on value 

changes that are considered significant for scheduling, and suppress insignificant value updates.  
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On the other hand, it does not answer the second question: Which updates are actually significant 

such that a new schedule needs to be calculated? After all, the schedule calculation implies big 

processing overhead, even if executed on a fast edge cloud server infrastructure hosting the CNC. To 

answer this question, some knowledge of the robust scheduling algorithms is required, which can cope 

with stochastic PD. These algorithms are described in Section 3 but in a nutshell, we can summarize 

the requirements as follows: For the scheduler it is important to know the probability of the frame 

transmissions completing within some time interval [dmin,dmax ] allocated by the schedule for the 

transmission. For adapting the schedule, e.g., by increasing or decreasing the size of allocated 

intervals, it is important to know whether the schedule actually falls behind the desired reliability or 

exceeds the desired reliability. Notifications towards the CNC and scheduler are only sent if the actual 

reliability — i.e., the 5G reliability guarantee when keeping [dmin,dmax ] —  significantly differs from the 

5Greliability required for upholding the streams’ guarantees end-to-end.  

Content-based subscriptions (informing bridges which updates are relevant) also would give the 

possibility for more sophisticated, hierarchical adaptation strategies. To meet reliability requirements, 

one could either adapt the (radio) resources allocated to streams at the 6GDetCom node, i.e., solve 

the problem by adapting the 5G system. Or one could adapt the resources allocated by the end-to-

end schedule (allocated time intervals) to solve the problem “end-to-end” on the TSN level. Informing 

the 6GDetCom node of what changes are considered significant from the end-to-end scheduling 

perspective allows the 6GDetCom node to make an informed decision whether it should solve the 

problem locally in the 5G system, or escalating the problem to TSN network control to solve the 

problem end-to-end. Obviously, such a hierarchical adaptation approach is challenging. Since this 

report is focused on the adaptation of end-to-end schedules, we consider hierarchical adaptation to 

be out of the scope of this report and part of future work. But we conclude that using content-based 

subscriptions could reduce overhead by only reporting significant changes to the scheduler and 

support hierarchical adaptation approaches by enabling the 6GDetCom node to make informed 

decisions whether to adapt locally.   

2.5.2 Proactive Schedule Adaptation 
If we want to further reduce the lead time of scheduling below tcalc, we cannot rely on a reactive 

scheduling approach that only starts calculating schedules when the PD has already changed. Instead, 

we must calculate schedules proactively to ideally have them ready when the PD actually changes. 

This is only possible if we employ PD prediction to predict the future packet delay and use these 

predictions as input to calculate end-to-end schedules. If predictions are sufficiently accurate to 

predict the PD distribution that will occur tcalc time units in the future, we could theoretically reduce 

the broken time to zero by always having a correct schedule ready in time. So the duration tcalc to 

calculate a new schedule is still critical here. If tcalc is long, then also the PD prediction must be able to 

predict PD distributions for a long time in the future to fully compensate for the long calculation time. 

A simple protocol is depicted in Figure 9. Note that we replaced bridges here by the prediction service 

since the prediction algorithms typically require substantial resources, which we might not associate 

with a classic TSN bridge but some service running, for instance, in an edge cloud infrastructure. 

Moreover, the prediction service might not only consider local data of a bridge to make predictions 

but could utilize all available global context information, including information from the network and 

the environment (e.g. station mobility, obstacles, etc.). 
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We augment port-to-port delays provided as YANG data models by a validity period as defined above 

in our YANG data model. In particular, the attribute valid-to specifies that the current port-to-port 

delay distribution will expire at this point in time. Then the CNC can query for a new distribution tcalc 

time units in advance and push the new schedule to the bridges before the expiration time. Bridges 

will use the new schedule at this time or earlier, if prediction indicates that the new distribution is 

already valid before the old schedule expires using the model attribute valid-from. TSN supports 

to make the configured admin-control-list (new GCL) operational at the admin-base-

time if the admin-base-time is in the future, i.e., candidate configuration data store of bridges 

can already be configured in advance and automatically make the new schedule operational. 

 

Figure 9: Sequence diagram – Proactive adaptation of schedules 

Such a predictive approach can be made more sophisticated depending on the capabilities of the 

prediction mechanism. Although a detailed discussion of prediction mechanisms is out of the scope of 

this report and discussed elsewhere in the DETERMINSTIC6G project in dedicated reports and 

publications [MNS+23, MSG23], we provide here a short description of the prediction concepts and 

then discuss implications for the adaptation of end-to-end scheduling.  

Overview of Data-driven Prediction 

The accurate prediction of PD characteristics is essential for achieving dependable time-critical 

communications in 6G networks. With the evolution of various network and traffic conditions in 

5G/6G systems, the ability to estimate the probability density function (PDF) of packet delay is 

required, e.g., to calculate robust end-to-end schedules. Data-driven approaches, particularly those 
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leveraging ML techniques, have been proposed to obtain the relationship between packet delay and 

various conditions based on real-world measurement data. Specifically, conditional density estimation 

(CDE) of delay involves creating a mapping (ℎ𝜔) from the conditions 𝑋 (e.g., the network state) to the 

parameters 𝜃 (e.g., mean, skewness, variance, long tail) of the density function, i.e., 𝜃 = ℎ𝜔(𝑋). 

Deliverable D2.1 “6G Centric Enablers” [DET23-D21] provides a detailed description of the proposed 

approaches to solve the CDE problem. In essence, the goal of such data-driven delay predictors is to 

obtain a delay characterization in the form of a PDF given a specific network and traffic state. 

Given the dynamic nature of 5G-Adv/6G systems concerning network and traffic, it is not sufficient to 

produce delay predictions once and use that to calculate end-to-end schedules. The delay predictions 

of 5G made at a certain time are expected to change over time as the system state evolves 

stochastically. Therefore, it is useful to provide a quantitative measure of confidence in delay 

predictions. Generally, this confidence should decrease with the forecast lead time, meaning the 

further into the future the prediction, the lower the confidence in the estimated delay PDF. The 

confidence level can be defined as the difference between the estimated delay PDF (ranging over a 

few network conditions) and the marginal delay PDF (ranging over many/all network conditions) 

[Del04]. Conversely, the "time of predictability limit" (𝐿𝑝𝑟𝑒𝑑) can be defined as the time when it is no 

longer possible to distinguish between the estimated and marginal PDFs, indicating that predictability 

diminishes. From an end-to-end scheduling perspective, on one hand, a larger 𝐿𝑝𝑟𝑒𝑑  implies a longer 

duration over which the end-to-end schedule is expected to meet the delay-reliability requirement. 

On the other hand, if 𝐿𝑝𝑟𝑒𝑑  is smaller, faster computation and adaptation of schedules are required. 

Implications for predictive end-to-end scheduling  

A reactive adaptation mechanism would solely consider the current packet delay PDF, e.g., as 

approximated by its parameters 𝜃 = ℎ𝜔(𝑋). However, in case 𝐿𝑝𝑟𝑒𝑑 is relatively small, the end-to-

end scheduler may not be able to find eligible solutions within the required timespan. As a 

consequence, the end-to-end scheduler may have to fall back to a (potentially more conservative) 

precomputed TSN schedule.  

Our end-to-end scheduler design supports proactive approaches by incorporating the following: 

• Multiple port-to-port delay histograms can be specified with our YANG data models of Section 

2.3. Each histogram can be associated with dependencies that capture the current network 

condition 𝑋, defining under which circumstances the provided port-to-port delay is applicable. 

The notion of network conditions is deliberately generic to be able to cover a broad range of 

dependencies. 

• By exposing a set of the most likely packet delay histograms, i.e., {(𝑋1, 𝜃1), … (𝑋𝑘 , 𝜃𝑘)}, our 

end-to-end scheduler can proactively start finding eligible schedules 𝑆𝑖 for each network 

condition 𝑋𝑖 . Hence, if the prediction service notifies our scheduler of changing network 

conditions thereafter, we can immediately deploy the precomputed schedule 𝑆𝑖 without 

additional overhead.  

Further details on possible realizations of proactive end-to-end scheduler are provided in Section 3.4. 
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2.6 Network Topology with Wireless By-Pass 
Next, we focus on another systems aspect that impacts end-to-end scheduling: leveraging the wireless 

network to by-pass a chain of wired links. Such a wireless by-pass has positive effects onto the complex 

task of end-to-end scheduling since the simplified topology has fewer hops on end-to-end paths. A 

simplification of the complex scheduling task is particularly beneficial if schedules need to be adapted 

to dynamic changes such as applications and their streams joining of leaving the system. Thus, the 

wireless by-pass also simplifies such adaptations and reduces the time to adapt, e.g., to calculate new 

schedules.    

We first introduce the architecture of the wireless by-pass before discussing its impact.  

2.6.1 The Wireless By-pass 
Figure 10 shows an example of a wired TSN network and its two main components: (1) the “End 

station” component, defined in IEEE Std 802-2014 [IEEE14-802], and (2) the “Bridge” component, a 

Customer Virtual Local Area Network (C-VLAN) component as defined in IEEE Std 802.1Q-2022 

[IEEE22-8021Q].  

 

Figure 10: TSN network components as per Figure 1 of IEEE/IEC 60802 D2.1 [IEC/IEEE24-60802] 

Early deterministic wireless standardization has intended to build as much as possible on existing 

functionalities/architectures, therefore the wireless system was modelled like a “virtual node” in the 

network architecture (i.e., trying to emulate the operation and characteristics of a wired TSN bridge 

or DetNet router). In such a modelling concept, the radio link of the 6GS becomes an internal entity 

interconnecting the external ports of the “virtual node”, so the radio link is not directly visible from 

outside. However, due to the fundamental characteristics of the multi-endpoint radio link, the 

characteristics of such a “virtual node” is heavily affected. The latency of a mobile transmission link is 

stochastic and heavy-tailed, i.e., larger delay values are more likely compared to exponentially 

bounded tails, and packet delay variation is relatively large. Therefore, the virtual nodes behave like 
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having a stochastic backplane, and its properties may lead to extra challenges during designing the 

end-to-end scheduling.  

At the same time, using wireless technology in a Time-Sensitive Network has positive impacts on the 

latency-related design as well. They are the result of the “wireless by-pass” effect, namely the number 

of hops between Talker/Listener(s) are significantly reduced due to the wireless link. For example, in 

usual wired industrial scenarios, the network architecture is based on daisy chaining several bridge 

components resulting in several 10s of hops network diameter. The proper design of scheduling is 

needed at each hop (e.g., calculation of GCL at bridges). A limited number of hops means a significant 

simplification regarding the calculations of schedules in general. In particular, in dynamic systems 

where schedules need to be adapted, e.g., due to dynamic stream sets (adding/removing streams 

to/from the schedule), such a simplification is beneficial since it also reduces the time to adapt.    

Depending on the use-case scenario, the simplification may end in an extreme scenario, where there 

is only a single-hop between the endpoints (e.g., an actor is wireless connected, 6G network elements 

(gNB, UPF) are implemented in the same local Cloud as the industrial controller of the actor. 

The following aspects of “wireless by-pass” are investigated:  

1. How can transport bottleneck(s) be eliminated? 

2. How is inter-stream impact mitigated, such that one stream does not impair the guarantees 

provided to another stream, e.g., with respect to per-stream delay bounds? 

Depending on the actual network scenario the outcome can be extreme, i.e., a simplified TSN 

architecture with minimal deterministic functions can be defined (e.g., a single TSN-specific service is 

providing “sync for actors/controllers”, and latency bounds are achieved via simple prioritization and 

over-dimensioning). 

2.6.2 Combined Wireless & Wireline Architecture 
The wireline (legacy) architecture has a quite simple partly-meshed topology, that contains ring(s) and 

daisy-chain of nodes (cf. Figure 11). There are always multiple hops between an “Actor”/”Sensor” and 

related “application controller(s) (Appl-Ctrl)”. The links between the network nodes have limited 

bandwidth, therefore scheduling is needed at each hop (including the end station component) (see 

Section 4 of deliverable D3.1 6G Convergence Enablers Towards Deterministic Communication 

Standards [DET23-D31]). 
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Figure 11: Example of wireline (legacy) architecture 

We see two major changes, which are motivated by new scenarios, that impact TSN-based systems 

and their legacy architecture and lead to a new improved architecture as depicted in Figure 12:  

1. Virtualizing and moving applications to Cloud. 

2. Adding wireless communication technology. 

The first change is moving application controllers to the Cloud, which allows to get rid of specific 

hardware components and provides flexible compute capacity for them. Using commodity hardware 

and gaining from Cloud technologies are a big driving force due to possible cost reduction for such 

changes as well. The internal network of the Cloud domain has a redundant and non-blocking 

topology. Cloud internal links have high BW capacity, several order of magnitude higher (10 Gbps and 

beyond) than e.g., legacy industrial networks (100 Mbps). 

From latency perspective, within the Cloud it is easy to use over-dimensioning in the TSN/DetNet 

network design. Careful design of scheduling is needed only in the (legacy) wired part of the end-to-

end communication due to the limited BW links. 

The second change is about adding wireless access for actors/sensors and improving further a scenario 

where virtualization and cloudification were already applied. The 6G-RAN/CN components can be 

implemented close to or within the Cloud. Such a wireless access significantly decreases the number 

of hops between the actor/sensor and its virtualized controller. However, the wireless hops have a 

different latency distribution (higher PD and PDV). BW can be easily increased in the system by adding 

additional radio resources (e.g. densification of radio cells, adding more spectrum), without the need 

to touch/replace physical interfaces.  

The TSN/DetNet-specific design can be simplified, as congestion scenarios can be solved with over-

dimensioning both in the radio and Cloud domain. Instead of analyzing the traffic situation/congestion 

in plenty of hops, the scheduling design can focus on the radio link of the 6G System. 
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Figure 12: Improved Architecture (adding Wireless and Cloudification) 

Depending on the location of the communication partners two scenarios can be distinguished: 

1. UE-UE communication with two radio legs. One is UL (uplink) and one is DL (downlink). 

2. UE-UPF communication with a single radio leg, either UL or DL. 

In case of two radio legs, the radio scheduling must consider both radio transmissions and deal with 

possible congestions. From the perspective of end-to-end scheduling, the end-to-end (TSN) scheduler 

sees only a single port-to-port delay distribution to be considered in the calculation of GCLs.  

2.6.3 Impact of Improved Architecture 
Using wireless links in TSN networks has both negative and positive impacts on the end-to-end system. 

The PD characteristics of wireless technologies with significantly higher PDV may have a negative 

impact on end-to-end latency bounds. But there are positive impacts as well, as its usage can 

significantly decrease the number of network hops (i.e., in extreme cases minimize the connections 

to a single transport hop). Furthermore, BW update of the whole end-to-end system is simplified and 

can be controlled by radio design. Of course, wireless and wireline can be combined and finding the 

best mix of the two technology is use-case dependent.  

The most winning scenarios are, where (1) application controllers are moved to the local Cloud; (2) 

6G-CORE implemented in the same local Cloud, and (3) actors/sensors are connected using wireless 

6G technology. The impact of using an improved architecture needs to be evaluated case-by-case. 

Algorithms for planning dynamic schedules and adaptation to dynamic stream sets are expected to 

play a key role to achieve the required end-to-end performance of the transport network. 

A detailed evaluation of the impact onto the performance of end-to-end scheduling with respect to 

schedulability, complexity (runtime) of schedule calculation, etc., will be conducted in future work in 

WP4.    
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3 Algorithms for Planning Dynamic Schedules 
After we have discussed the system aspects of adapting end-to-end schedules in dynamic systems, 

which provide the data and mechanisms for adaptation, we now focus on the algorithms for adapting 

end-to-end schedules in this section. We start with an overview, discuss related work, and then 

present several approaches for calculating schedules that are (a) robust to (potentially large) PDs and 

PDVs, and (b) adapt to dynamic stream sets and dynamically changing PD distributions.  

3.1 Overview 
When talking about adapting end-to-end schedules in dynamic systems, we first need to distinguish 

between the different causes that lead to dynamic changes that schedules then need to adapt to. We 

consider the following three different causes, which in turn require different approaches to calculate 

robust and adaptive end-to-end schedules: 

Dynamic stream sets: Streams between talkers and listeners might be added at runtime. Supporting 

dynamic stream sets is a relatively common goal in research on calculating TSN schedules. So-called 

incremental scheduling approaches have been proposed in the literature allowing the addition of new 

streams (and removing old streams), without calculating a new schedule from scratch. Instead, the 

existing schedule is extended, such that existing streams do not have to be re-scheduled and, 

therefore, during the transition phase to the new schedule should not be affected (no deadline or 

latency bound violations during the transition to the new schedule). 

Although the problem of incremental scheduling has already received attention in the research 

community, one of our approaches targeting dynamic packet delay (as discussed in Section 3.4) also 

lends itself very well to adapt to dynamic stream sets. 

Dynamic packet delay distributions: Dynamic characteristics of PD is one of the specific causes for 

dynamic changes in wireless systems, and therefore, we focus on approaches dealing with this cause. 

As introduced above, in contrast to the common assumptions in wired TSN systems, we assume PD 

delay – or more specifically, the port-to-port delay in 6GDetCom nodes – to be of stochastic nature. 

Therefore, we modelled it in the YANG data model presented in Section 2.3 as histograms, and 

measure latency at runtime to capture the current PD and predict the future PD using a data-driven 

approach. Obviously, the quality of the radio channel is affected by network conditions that are not 

deterministic and known a priori, such as dynamic interference, shadowing by obstacles between 

mobile station and base station, reflection, diffraction, and scattering on physical objects in the 

environment, slow and fast fading of the signal, etc. All these factors can lead to dynamic bit error 

rates, to dynamic frame error rates, and to a dynamic number of retransmissions. Hence, from the 

perspective of TSN, they all induce stochastic packet delays that may change for different network 

conditions. 

Calculating robust end-to-end schedules for the theoretic worst case with very large PDV would in 

many situations waste a lot of capacity. For instance, in a GCL, very conservative (long) time intervals 

would be reserved for streams to cover their worst-case minimum and maximum delay bounds. This 

directly impacts schedulability and scalability, i.e., the ability to accommodate many streams in the 

network. Instead, we should consider (a) the actual required reliability instead of aiming for an 

unrealistic 100 % reliability; (b) the actual PD distribution measured at runtime; (c) changing PD 

distribution at runtime, ideally with a proactive approach (see Section 2.5) utilizing PD predictions.  
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We present different approaches to calculate schedules that are robust to PD and can adapt to 

dynamic PD distributions. One approach tries to maximize the robustness of schedules to PDV. The 

idea is that such a schedule would avoid adaption as long as possible since it is sufficiently robust to 

cover a large range of PD – informally speaking, it follows the principle: the best adaptation is the 

adaptation that you do not have to do. Such an extreme approach might impact schedulability and 

scalability, as already mentioned since it gravitates towards one extreme end in the solution space 

(maximum robustness). 

 

Figure 13: Illustration of tardiness in TSN 

This motivates the other approaches that we present striving for a given reliability bound typically 

below 100 %. We present a novel approach mapping the scheduling problem to a graph model with 

very interesting features, such as the ability to adapt a previously calculated schedule quickly instead 

of starting all over again from scratch. Moreover, it enables graceful degradation of schedules, where 

the so-called tardiness (difference between deadline and actual completion time, as shown in 

Figure 13) is increasing only gradually and bounds are guaranteed with certain, provable reliability 

(instead of a schedule with arbitrary violations, i.e., no guarantees at all).    

In the following, we will describe each of the sketched approaches in detail, after a short discussion of 

the related work presented next.        

3.2 Background and Related Work 
We have seen above that there are different goals for adaptivity with respect to end-to-end 

scheduling, namely, adaptation to dynamic stream sets (incremental scheduling) and dynamic PD 

distributions. There are many existing approaches for “classic” TSN scheduling in wired networks, 

which focus on other problems under fundamentally different system assumptions such as dealing 

with the inherent complexity of standard scheduling problems using fast heuristics, which do not 

include variable PD, mobility, or similar. For an overview of these approaches, we refer the interested 

reader to existing surveys like [SOL+23].   

Incremental Scheduling 

Incremental scheduling, i.e., the ability to add new streams at runtime to the schedule, has received 

relatively large attention in the research community since this is motivated by popular paradigms like 

“plug and produce”, where machines can be added dynamically to a shop floor in production. Many 

approaches focus on the problem of decreasing the runtime of schedule calculation when new 

streams are added by using heuristics [RPG+17, NDR18, FGD+22]. Possibly the most interesting 

approaches are those that explicitly target the calculation of extensible schedules that, informally 

speaking, leave headspace for future streams when calculating the current schedule. In [GRK+21, 

GRK+23], the authors propose the flexibility curve concept. The basic idea of this approach is to first 

model the flexibility (number of possibilities to embed streams along paths) of a schedule to add new 

streams along paths. Based on this model, new streams can be scheduled to minimize the impact on 

flexibility which allows adding more streams in the future.  
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Scheduling with Uncertainty in Time-Sensitive Networking 

While uncertainty induced by stochastic packet delays remains a blind spot in existing TSN scheduling 

literature, existing approaches can deal with individual transmission failures or total link failures. For 

instance, Craciunas et al. [COC+16] show that complete schedule breakdowns may already occur for 

small timing inaccuracies or sporadic transmission failures. The authors propose frame isolation 

constraints to ensure that such faults do not impair the punctuality guarantees of other streams. While 

it is straightforward to generalize this approach to include stochastic packet delays, preliminary 

evaluations show that its induced resource overprovisioning prohibits the scheduler — already for a 

few wireless streams — from finding eligible solutions. 

Similar to our categorization in Section 2.5, existing literature covering total link failures can be 

grouped into reactive and proactive approaches. For example, a reactive approach is proposed in 

[PRH18] that computes an alternative route upon detecting a link failure. In contrast, [ZSE+21] 

develops a proactive approach by modelling switches and transmission links with known failure 

probabilities.  

3.3 Maximize Reliability under Dynamic Packet Delay 
In D3.1 “Report on 6G convergence enablers towards deterministic communication standards” 

[DET23-D31], we already presented a basic wireless-friendly, adaptive end-to-end scheduling 

algorithm. This scheduling algorithm aims to maximize reliability by maximizing the gap between any 

two streams. This approach leads to improved results over already existing scheduling algorithms for 

wired networks. However, this approach only considers the mean value of the estimated packet 

delays. If this mean delay changes, the reliability of the calculated schedule might suddenly drop and 

require for a new schedule calculation, which leads to frequent recalculations of the schedule. 

As the calculation of new schedules is time-consuming, it is preferable to reduce the need for schedule 

adaptation in advance. One way to achieve this is by already considering further parameters of the 

delay measurements and delay predictions as provided by the mechanisms of Section 2.4 and 2.5. To 

this end, we extend our approach from [DET23-D31] to take into account the known or estimated 

“uncertainty” of streams. 

A detailed description of the variables and constraints of this ILP-based approach can be found in 

[DET23-D31]. In this report, we extend this approach and focus on the evaluation of different 

optimization goals. In order to maximize the reliability in our network, we use the 𝑔𝑎𝑝𝑠,𝑡,𝑒 variable as 

introduced in [DET23-D31] for every combination of two streams 𝑠, 𝑡 and every edge 𝑒 they have in 

common on their path. This variable denotes the temporal distance between the completed 

transmission of one stream and the transmission start of the other stream. The gap variable can be 

defined by using the binary decision variable 𝑏𝑠,𝑡 which denotes, whether stream 𝑠 is scheduled before 

stream 𝑡 or vice versa: 

 

𝑖𝑓(𝑏𝑠,𝑡) → 𝑔𝑎𝑝𝑠,𝑡,𝑒 ≤ 𝑠𝑡𝑎𝑟𝑡𝑡,𝑒 − 𝑒𝑛𝑑𝑠,𝑒

𝑖𝑓(¬𝑏𝑠,𝑡) → 𝑔𝑎𝑝𝑠,𝑡,𝑒 ≤ 𝑠𝑡𝑎𝑟𝑡𝑠,𝑒 − 𝑒𝑛𝑑𝑡,𝑒

(3.1) 
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3.3.1 Optimization goals 
In the following we present how we can use this gap variable to improve the reliability of calculated 

schedules. We explain our approaches based on the example network shown in Figure 14. 

 

Figure 14: Example network with to wireless and two wired streams 

This network consists, for example, of two exoskeletons (exo[0] and exo[1]) which are connected to a 

server via the 6GDetCom (detCom) node and two sensors (sensor[0] and sensor[1]) with a wired 

connection to the same server via a TSN bridge (bridge1). There are four streams in this network, 

𝑒𝑥𝑜1, 𝑒𝑥𝑜2, 𝑠𝑒𝑛𝑠𝑜𝑟1 and 𝑠𝑒𝑛𝑠𝑜𝑟2. All streams transmit data from the respective device to the server 

connected to bridge1. The 𝑒𝑥𝑜 streams transmit data every 10 𝑚𝑠 and need to arrive within their 

cycle time of 10 𝑚𝑠. The 𝑠𝑒𝑛𝑠𝑜𝑟 streams transmit data every 5 𝑚𝑠 and have a maximum end-to-end 

latency requirement of 100 𝜇𝑠. Our simulation uses the uplink histogram PD-Wireless-5G-1 from 

[DET23-D41] with a mean of 𝜇 = 5.6 𝑚𝑠 and a standard deviation of 𝜎 = 500 𝑛𝑠 for the wireless link 

within the 6GDetCom node. We assume that all other delays, such as the link delay for wired links and 

the processing delay of switches are constant. 

Optimization Objectives. 

As already proposed in D3.1, one approach (further referred to as Approach 𝐴) to increase the 

reliability in the network is to maximize the gap between streams by summing up all gap variables 𝑔 ∈

𝐺 using the following formula: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ 𝑔

𝑔∈𝐺

) (3.2) 

We have already shown that this approach leads to better results than a scheduling approach solely 

developed for wired networks. However, this approach has one drawback: In bigger networks, some 

streams share more edges than other streams. In our example network, this corresponds to the 𝑒𝑥𝑜 

streams sharing two edges with each other while the other streams only share one network link. When 

maximizing the sum of all gaps, this approach increases the time gap between streams with more 

common edges more than other streams, which is not the desired behavior. 

To circumvent this undesired behavior, we propose a new optimization approach (Approach 𝐵), which 

maximizes the sum of the smallest gaps between every pair of streams. To this end, we introduce a 
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new variable 𝑔𝑎𝑝𝑠,𝑡 which denotes the minimal gap between the two streams 𝑠 and 𝑡. We ensure this 

behavior by introducing a new constraint, which forces this gap variable to be smaller or equal to the 

gap variable of any edge between 𝑠 and 𝑡: 

∀𝑒 ∈ 𝐸: 𝑔𝑎𝑝𝑠,𝑡 ≤ 𝑔𝑎𝑝𝑠,𝑡,𝑒 (3.3) 

We denote the set of these per-stream-pair gap variables as 𝐺𝑠. By summing up all gap variables 𝑔 ∈

𝐺𝑠, we obtain our new optimization goal, similar as before. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ( ∑ 𝑔

𝑔∈𝐺𝑠

) (3.4) 

Weighting based on uncertainty. 

The optimization goal presented above now treats all streams equally and aims to evenly distribute 

them along the cycle time. Our example network, however, contains two different types of streams 

with different characteristics. The 𝑒𝑥𝑜 streams suffer from a high PDV as described in our simulation 

setup above, while the sensor streams don’t have any PDV configured, as they are only present in the 

wired part of the network. The approach presented above, however, does not distinguish between 

these different types of streams. Thus, it also maximizes the gap between the 𝑠𝑒𝑛𝑠𝑜𝑟 streams even 

though they do not influence each other. We aim to make use of the knowledge of different stream 

characteristics to further optimize our approach. 

In the following, we assume our scheduler receives a delay distribution, e.g. by the CNC as described 

in Section 2.4 and 2.5. We can use this delay distribution to derive a metric of “uncertainty”. This 

uncertainty can hold different values, such as the standard deviation of the delay distribution, the 

min-max bounds or expected changes to the delay distribution in the future. For the evaluation in this 

work we utilize the standard deviation of the provided delay distribution. 

In our first modification (Modification 𝛼), we aim to minimize the effect of streams with a higher 

uncertainty onto streams with lower uncertainty. To this end, we modify our optimization goal to 

move streams with a higher uncertainty further apart and streams with a lower uncertainty closer 

together. Our approach first defines a weight parameter 𝑤𝑠,𝑧 for two streams 𝑠,𝑡 based on the sum of 

their standard deviations 𝜎𝑠 and 𝜎𝑠. Afterwards, the weights are normalized using the Greatest 

Common Divisor (GCD) of all weights, i.e. we calculate the GCD of all weights and divide all weights by 

this GCD. This helps to keep the weights small in order to prevent numerical issues in the ILP solver. 

In our example network, this leads to the following weights: 

𝑤𝑒𝑥𝑜1,𝑒𝑥𝑜2 = 2;  𝑤𝑠𝑒𝑛𝑠𝑜𝑟1,𝑠𝑒𝑛𝑠𝑜𝑟2 = 0  

𝑤𝑒𝑥𝑜1,𝑠𝑒𝑛𝑠𝑜𝑟1 = 𝑤𝑒𝑥𝑜1,𝑠𝑒𝑛𝑠𝑜𝑟2 = 𝑤𝑒𝑥𝑜2,𝑠𝑒𝑛𝑠𝑜𝑟1 = 𝑤𝑒𝑥𝑜2,𝑠𝑒𝑛𝑠𝑜𝑟2 = 1;   

We then use these weights to the objectives from our previous approaches in the following ways: 

For Approach 𝐴𝛼 when maximizing the sum of all streams gap variables as in (3.2): 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ( ∑ 𝑤𝑠,𝑡 ⋅ 𝑔𝑠,𝑡,𝑒

𝑔𝑠,𝑡,𝑒∈𝐺

) (3.5) 
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For Approach 𝐵𝛼 when summing up the per-stream-pair gap variables as in (3.4): 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ( ∑ 𝑤𝑠,𝑡 ⋅ 𝑔𝑠,𝑡

𝑔𝑠,𝑡∈𝐺𝑠

) (3.6) 

We assume that our 𝛼 modification leads to better results than the approaches without any 

modification. However, when two streams suffer from a higher uncertainty, the effect of a collision 

on those streams might be negligible compared to the uncertainty. To this end, we propose another 

modification (Modification 𝛽), which calculates weights based on the similarity of the provided 

uncertainty, i.e. when two streams have a similar uncertainty, the weight is low and when the 

uncertainty differs, the weight is high. For this approach, we calculate the weight 𝑤𝑠,𝑡 by calculating 

the absolute difference of the standard deviations |𝜎𝑠 − 𝜎𝑡| and again normalizing it with the GCD of 

all weights. This leads to the following weights for our example network: 

 𝑤𝑒𝑥𝑜1,𝑒𝑥𝑜2 =  𝑤𝑠𝑒𝑛𝑠𝑜𝑟1,𝑠𝑒𝑛𝑠𝑜𝑟2 = 0  

𝑤𝑒𝑥𝑜1,𝑠𝑒𝑛𝑠𝑜𝑟1 = 𝑤𝑒𝑥𝑜1,𝑠𝑒𝑛𝑠𝑜𝑟2 = 𝑤𝑒𝑥𝑜2,𝑠𝑒𝑛𝑠𝑜𝑟1 = 𝑤𝑒𝑥𝑜2,𝑠𝑒𝑛𝑠𝑜𝑟2 = 1;   

3.3.2 Evaluation 
For our evaluation of the approaches presented above, we use networks structured as our example 

network from Figure 14 but with a varying number of network devices up to 150 total devices. The 

packet size for each stream is randomly chosen to be between 16 𝐵 and 512 𝐵. We use a scheduling 

algorithm for a wired network as our baseline approach (𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 0). 

Figure 15 shows the percentage of late packets between our different approaches. We can see that 

all our wireless-friendly optimization goals are able to improve upon the baseline scheduling approach 

for wired networks. 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝐴 mainly reduces the percentage of late packets for the worst streams 

while 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝐵 is also able to improve the mean and median percentage of late streams. We can 

also see that considering further information about the expected uncertainty of a stream with 

𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝛼 and 𝛽 improves the percentage of late packets even further.  

In Figure 16 we can see that our 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝐵 is also able to reduce the arrival time jitter for the sensor 

streams. 



 
Document: Report on Optimized Deterministic End-to-End 
Schedules for Dynamic Systems 

 Version: v1.0 
Date: 27-06-2024 

Dissemination level: Public 
Status: Final 

 
 

101096504  DETERMINISTIC6G  50 

 

Figure 15: Percentage of late packets of sensor streams per approach 

 

Figure 16: Average arrival time jitter of sensor streams per approach 

Our evaluation shows that choosing different optimization goals clearly improves upon scheduling 

approaches created for wired networks. Additionally, it suggests that utilizing further “uncertainty” 

metrics reduce the number of late packets even further which can be used as an advantage to defer 

the need for adapting schedules. 

3.4 Adaptation to Dynamic Packet Delays 
While maximizing the reliability against dynamic packet delays, as discussed in Section 3.3, can defer 

the need to adapt the schedule to some degree, employing this approach in a stand-alone manner has 

two disadvantages: 

1. Reliability guarantees can only be made after the schedule has been computed. That is, the 

approach of Section 3.3 aims to maximize the achieved reliability guarantees while the 

streams’ end-to-end latency requirements are satisfied. Instead, the strategy described in this 

section conserves the reliability guarantees of each stream and aims to optimize the 

schedule’s maximum tardiness. 
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2. Section 3.3 cannot circumvent the need for adaptation entirely. For example, Figure 17 shows 

the wireless transmission interval for a single frame 𝑓 across a wireless link [𝑢, 𝑣]. While the 

corresponding schedule may achieve a reliability guarantee of 33.33% for 𝑓, its reliability 

already plummets to below 1.5% when the uplink histogram is only shifted by one millisecond 

to the right. 

 

Figure 17: Reliability impairment caused by wireless channel degradation 

To address both shortcomings, we devise a linear-time adaptation strategy to eliminate reliability 

impairments of Figure 17b. Section 3.4.1 introduces shuffle graphs as a natural graphical 

representation of schedules in wireless TSN. Thereafter, Section 3.4.2 introduces a simple adaptation 

strategy that, based on shuffle graphs, can adapt the schedule in linear time. Finally, Section 3.4.3 and 

Section 3.4.4 illustrates the impact of our proposed adaptation strategy and discusses its implications 

on the Deterministic6G infrastructure. For additional details, we refer the reader to [Egg24]. 

Remark: To improve visualization, we use rather small reliability requirements of, for example, 

33.33% throughout this section. The presented concepts can, however, be applied analogously for 

requirements that far exceed 99%. 

3.4.1 Shuffle Graphs as a Graphical Representation of TSN Schedules 
We devise a graphical representation of TSN schedules to enable a linear-time adaptation strategy. To 

this end, we adjust the Disjunctive Graph Model (DGM) — a well-established tool from job-shop 

scheduling — to incorporate exactly the scheduling capabilities of TSN bridges. 

Figure 17a: Before degradation Figure 17b: After degradation 
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Figure 18: Simple network (a) and transmission order determined by a scheduler (b) 

Disjunctive Graph Selections. In the first step, the scheduler is employed to compute the Gate Control 

Lists (GCL) for each egress port of each TSN bridge. While schedulers typically discard additional 

information that is not encoded in the GCLs, we require the scheduler to further define the intended 

transmission order of each egress port. For example, Figure 18a shows a simple network topology with 

three message streams {𝑓1, 𝑓2, 𝑓3} that traverse the network from mobile talkers 𝑇1, 𝑇2 to the listener 

𝐿. By computing an IEEE 802.1Qbv schedule to configure the GCLs, the scheduler implicitly defines the 

transmission order, i.e., the disjunctive graph selection, as in Figure 18b. This selection encodes two 

vital types of constraints:  

• 𝑂𝑓1

1 → 𝑂𝑓1

2  encodes that the second transmission of 𝑓1(i.e., via [𝐵1, 𝐵2]) can only commence 

after the first transmission of 𝑓1 (i.e., via [𝑇1, 𝐵1]) completed. 

• 𝑂𝑓1

2 → 𝑂𝑓2

2 specifies the order of the contesting transmissions of 𝑓1and 𝑓2 via [𝐵1, 𝐵2].  

Discussion. While [Egg24] contains the formal definition of disjunctive graphs and consistent 

selections, this document addresses the central considerations from a system design perspective: 

How do disjunctive graphs cover the scheduling capabilities of TSN bridges? Reviewing Figure 18b, 

we illustrate that the IEEE 802.1Qbv capabilities do not support arbitrary transmission orders. For 

instance, if both 𝑓1and 𝑓2 share the same Priority Code Point (PCP), bridge 𝐵1must transmit 𝑓1first if 

and only if 𝑓1 is enqueued first. Consequently, we constrain that 𝑂𝑓1

2 → 𝑂𝑓2

2  and 𝑂𝑓1

3 → 𝑂𝑓2

3  share the 

same orientation. Furthermore, disjunctive graphs must not induce any cyclic dependencies between 

transmissions.  

How do disjunctive graphs support modelling OFDMA? Compared to mutual exclusion constraints 

that are typically employed for scheduling in wired TSN, disjunctive graphs also support modelling 

OFDMA by virtually duplicating wireless links. For example, 𝑇1 may employ different frequency bands 

for transmitting 𝑓1and 𝑓2, eliminating the streams’ temporal transmission contest. By duplicating the 

wireless link [𝑇1, 𝐵1] for each available frequency band, the scheduler must specify the allocated 

Resource Blocks (RB) for each wireless transmission. Consequently, if the frequency bands for 𝑓1and 

Figure 18a: Network topology Figure 18b: Transmission Order 
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𝑓2 are non-overlapping, the disjunctive graph in Figure 18b does not include an edge 𝑂𝑓1

1 → 𝑂𝑓2

1 , 

implying that 𝑓1and 𝑓2 can be transmitted concurrently over [𝑇1, 𝐵1]. 

How do disjunctive graphs compare to alternative modelling approaches? Disjunctive graphs provide 

a higher degree of modelling freedom over existing approaches. In particular, typical approaches often 

consider frame-based transmission orderings, where a frame 𝑓1 is transmitted over [B, B’] before 𝑓2 if 

and only if 𝑓1is transmitted over all joint links before 𝑓2. Such coarse-grained approaches appear 

unfavorable in more complex network topologies that contain diamond structures (such as in Figure 

19). In contrast, disjunctive graphs provide full decision-flexibility to the scheduler. 

 

Figure 19: Diamond network 

Shuffle Graphs. While disjunctive graph selections encode the transmission order for each egress port, 

we derive shuffle graphs as a one-to-one graphical representation of a wireless TSN schedule. For 

instance, Figure 20 shows the corresponding shuffle graph of Figure 18b. In this simplified setting, the 

shuffle graph is derived in two steps: 

1. Add FIFO edges to isolate potential frame transmission faults. That is, for each edge of the 

form 𝑂𝑓1

2 → 𝑂𝑓2

2  — specifying that 𝐵1 transmits 𝑓1 before 𝑓2 via [𝐵1, 𝐵2] — the shuffle graph 

adds the FIFO edge 𝑂𝑓1

2 → 𝑂𝑓2

1  to ensure that 𝑓2 does not arrive too early at 𝐵1. Otherwise, it 

may occur that 𝑓2’s early arrival at 𝐵1 causes 𝑓2 to “steal” the transmission slot of 𝑓1, 

potentially impairing the reliability of 𝑓2 itself (when dropped by PSFP at 𝐵2) or the reliability 

of other high-criticality streams due to interference at subsequent egress queues. 

2. Add transmission weights to separate the transmission offsets accordingly: 𝑤 (0 → 𝑂𝑓𝑖

𝑗
) 

corresponds to the release time of 𝑓𝑖 at its talker. 𝑤 (𝑂𝑓𝑖

𝑗
→ 𝑂𝑓𝑖

𝑗+1
) specifies an upper bound 

for 𝑓𝑖’s transmission over its jth hop, consisting of processing, propagation, and transmission 

delay. For example, 𝑤(𝑂𝑓1

1 → 𝑂𝑓1

2 ) = 5.966𝑚𝑠 equals the upper bound of Figure 17a to 

achieve a reliability of 33.33%, whereas 𝑤(𝑂𝑓1

2 → 𝑂𝑓1

3 ) = 1.5𝑚𝑠 conservatively bounds the 

delay of 𝑓1 via wired Ethernet links.5 Finally, we set 𝑤 (𝑂𝑓𝑖

𝑗
→ 𝑂𝑓𝑘

𝑙−1) = 𝑑𝑚𝑎𝑥 (𝑂𝑓𝑖

𝑗
) −

𝑑𝑚𝑖𝑛(𝑂𝑓𝑘

𝑙−1) to isolate transmission faults. For example 𝑤(𝑂𝑓1

2 → 𝑂𝑓2

1 ) = 1.5𝑚𝑠 − 5.348𝑚𝑠 =

 −3.848𝑚𝑠 ensures that 𝑓2 only arrives at 𝐵1 after the transmission of 𝑓1 via [𝐵1, 𝐵2] 

completed. 

 
5 We choose 1.5𝑚𝑠 to increase visibility in Figure 22. A more realistic setting may set 𝑤(𝑂𝑓1

2 → 𝑂𝑓1

3 ) = 12 µ𝑠 to 

include the transmission delay 
100𝑏𝑦𝑡𝑒

100 𝑀𝑏𝑖𝑡 𝑠−1 = 8µ𝑠 and to bound the processing and propagation delay by 4µ𝑠. 
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Figure 20: Shuffle graph induced by the selection of Figure 18b 

Deriving TSN Configurations. Shuffle graphs directly encode the GCL and PSFP configuration for each 

TSN bridge and each 6GDetCom node, as shown in Figure 20. In particular, the longest path 𝐶(𝑂𝑓𝑖

𝑗
) 

from source 0 to an operation 𝑂𝑓𝑖

𝑗
 corresponds to the transmission offset of 𝑓𝑖’s transmission over its 

𝑗th hop. The GCL of [𝐵1, 𝐵2] then contains an entry [𝑜, 𝑐] for 𝑓2’s transmission, where the gate 

• opens at time 𝑜 = 𝑆𝑚𝑖𝑛([𝐵1, 𝐵2], 𝑓2) = 𝐶(𝑂𝑓2

2 ) = 2 × 5.966𝑚𝑠 − 3.848𝑚𝑠 = 8.062𝑚𝑠, and 

• closes at time 𝑐 = 𝑆𝑚𝑎𝑥([𝐵1, 𝐵2], 𝑓2) = 𝐶(𝑂𝑓2

2 ) + 1.5𝑚𝑠 = 9.562𝑚𝑠. 

Analogously, we define PSFP enforced intervals that discard any frames that arrive outside their 

specification. In case of 𝑓2’s transmission via [𝑇1, 𝐵1]2, the transmission may last between 5.348𝑚𝑠 

and 5.966𝑚𝑠 to achieve a reliability of 33.33% (see Figure 17a). We therefore configure the PSFP 

enforced interval to forward 𝑓2 at 𝐵1if and only if it arrives within [𝑅𝑚𝑖𝑛(𝐵1, 𝑓2), 𝑅max(𝐵1, 𝑓2)], where 

• 𝑅𝑚𝑖𝑛(𝐵1, 𝑓2) = (𝑆𝑚𝑖𝑛 + 𝑑𝑚𝑖𝑛)([𝑇1, 𝐵1], 𝑓2) = 𝐶(𝑂𝑓2

1 ) + 5.348𝑚𝑠 = 7.466𝑚𝑠, and 

• 𝑅𝑚𝑎𝑥(𝐵1, 𝑓2) =  𝑅𝑚𝑖𝑛(𝐵1, 𝑓2) +  5.966𝑚𝑠 −  5.348𝑚𝑠 = 8.084𝑚𝑠. 

In case 𝑓2 does not arrive at 𝐵1 within said interval, 𝐵1 must either discard 𝑓2 or demote 𝑓2 (e.g., to 

best-effort).  

To realize a traversal of the shuffle graph that is linear in the number of transmission operations, it is 

important to avoid traversing implicit edges. For instance, Figure 20 no longer contains any edge from 

𝑓1’s operations to 𝑓3’s operations. This is because a any FIFO edge like 𝑂𝑓1

2 → 𝑂𝑓3

1   can be substituted 

by the existing path 𝑂𝑓1

2 → 𝑂𝑓2

1 → 𝑂𝑓2

2 → 𝑂𝑓3

1 .  

 

Figure 21: Simulated timeline for adapting the end-to-end TSN schedule 
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Figure 22: Schedule encoded by shuffle graph of Figure 20 

3.4.2 Linear-Time Adaptation Strategy 
Shuffle graphs enable a simple adaptation strategy to uphold the reliability guarantees even for 

degrading wireless channels as in Figure 17b. We consider a timeline as depicted in Figure 21: For an 

initial PD distribution, the scheduler is allowed to find and optimize a TSN schedule for a relatively 

long time (here, for five minutes). After that, the prediction service notifies the end-to-end scheduler 

of updated PD distributions which invalidates the initially computed TSN schedule. The scheduler then 

only has a short timespan (here, ten seconds) to find an adapted solution before the new TSN 

configuration is due. For the adapted transmission intervals, we consider different degradation 

patterns (mirrored, skewed, shifted), which are used in Section 3.4.4 to evaluate our adaptation 

strategy. 

Shuffle graphs allow for a highly efficient adaptation strategy with a runtime that is linear in the 

number of frame transmissions per hypercycle. This is achieved by first adjusting the reserved 

transmission intervals for the updated PD distributions, e.g., from [5.348𝑚𝑠, 5.966𝑚𝑠] to 

[6.348𝑚𝑠, 6.966𝑚𝑠] to regain a reliability guarantee of 33.33% in Figure 17. Subsequently, a single 

linear-time traversal of the shuffle graph suffices to update its weighted edges and to derive the 

adapted TSN configuration, as described in Section 3.4.1.  

Reviewing Figure 22, we can analyze the impact of adapting the schedule to accommodate for the 

degraded wireless channel. Assuming for simplicity that only the transmission of 𝑓1 is affected, the 

adapted schedule would need to shift all remaining transmissions by 1𝑚𝑠 forward in time to retain a 

robust schedule. Consequently, our adaptation strategy converts streams’ reliability impairments (as 

in Figure 17b) into tardiness where the schedule may no longer satisfy all end-to-end latency 

requirements of the message streams. By symmetry, however, we find that our adaptation strategy 

converts streams’ reliability surpluses (of improving wireless channels) into additional slack that 

provides lower-priority traffic with additional transmission opportunities. In latter case, our 

adaptation strategy thus allows for an almost immediate redeployment of the new TSN configuration 
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3.4.3 Evaluation 

 

Figure 23: Maximum tardiness (𝑇𝑚𝑎𝑥) after adapting the schedule as in Section 3.4.2 (white box plots) and 
after additional rescheduling for 10 seconds (grey box plots) 

As discussed in Section 3.4.2, our adaptation strategy converts reliability impairments of degrading 

wireless channels into tardiness of the adapted schedule. To evaluate the impact of this conversion, 

we consider three degradation patterns that modify the initial transmission interval [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥] via 

• shifting [𝑑𝑚𝑖𝑛 + 𝑑, 𝑑𝑚𝑎𝑥 + 𝑑], 

• skewing [𝑑𝑚𝑖𝑛 + 0, 𝑑𝑚𝑎𝑥 + 𝑑], and 

• mirroring [𝑑𝑚𝑖𝑛 − 𝑑, 𝑑𝑚𝑎𝑥 + 𝑑]. 

For example, Figure 17b corresponds to a shifted degradation with 𝑑 = 1𝑚𝑠. 

We consider a simple network that consists of two wired partitions. Each partition comprises 15 TSN 

bridges in a tree topology where the root bridges are connected by a wireless link. We consider fixed 

wireline traffic of 50 frames per hypercycle that stay within their respective partition but require a 

short end-to-end latency of 200µ𝑠 and zero arrival jitter at their listeners. In comparison, we vary the 

number of wireless streams that utilize the wireless link to traverse across both partitions. Each 

wireless stream requires a reliability of 33.33% to arrive at their listeners within an end-to-end latency 

of 10𝑚𝑠 and a jitter of 5𝑚𝑠 [DET23-D11].  

Figure 23 shows the results for skewed degradation patterns with 20 wireless streams (a) and for 

mirrored degradation patterns with 60 wireless streams (b). We evaluate the maximum tardiness 

𝑇𝑚𝑎𝑥 of the adapted schedule, i.e., the maximum delay between actual and expected arrival 

experienced by wireless or wireline streams. Figure 23 shows an expected linear increase in the 

maximum tardiness for degrading wireless channels.  

By reapplying the metaheuristic scheduler of [Egg24] for a short period of time (≤ 10𝑠), the adapted 

schedule can be improved drastically. For Figure 23a, rescheduling is even able to eliminate the 

induced tardiness entirely, allowing to continuously guarantee the streams’ end-to-end latency 

requirements. Figure 23b illustrates, however, that while rescheduling is highly effective, it cannot 

Figure 23a: 20 wireless streams Figure 23b: 60 wireless streams 
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provide any formal guarantees about finding an optimal scheduling within an arbitrarily small period. 

In the following, we therefore discuss the implications of our adaptation strategy to the 

Deterministic6G infrastructure. 

3.4.4 Discussion 
Our summarized findings show that shuffle graphs provide a linear-time adaptation strategy to 

i. convert reliability impairments of degrading channels into tardiness, and to 

ii. convert reliability surpluses of improving channels into additional slack. 

To further reduce the tardiness of (i), we find that the metaheuristic rescheduling of [Egg24] is highly 

effective but cannot provide any formal guarantees about finding an optimal solution within a small 

period of time. We therefore argue that the reliability contracts between upper-layer services and the 

infrastructure provider should specify a graceful degradation of end-to-end latency guarantees for a 

wide range of channel degradation patterns. For instance, these contracts should specify a worst-case 

degradation scenario beyond which no formal end-to-end guarantees can be made. Still (i) and (ii) can 

be utilized to define optimal or near-optimal graceful degradation bounds in the reliability contracts.  

While (i) and (ii) may be employed in a reactive scheduling approach where the channel prediction 

alerts the CNC of improving or degrading channel qualities, it is also possible to employ (ii) for 

proactive scheduling mechanisms. More specifically, a proactive approach initially computes a 

sequence of eligible schedules (𝑆𝑖)𝑖=1
𝑛 for accompanying channel predictions (𝑃𝑖)𝑖=1

𝑛 . Then, for an 

updated channel prediction 𝑃𝑛+1 with improved wireless channel states over 𝑃𝑗 (1 ≤ 𝑗 ≤ 𝑛), (ii) can 

be utilized to efficiently transform 𝑆𝑗 into an eligible schedule 𝑆𝑛+1 that provides additional 

transmission opportunities to lower-priority traffic.  

3.5 Adaptation to Dynamic Stream Sets 
Section 3.4 adapted the schedule to degrading or improving wireless channels for a fixed stream set. 

We now extend the adaptation strategy to incorporate joining and leaving message streams. Similar 

to Section 3.4, the extended adaptation strategy consists of two phases: 

1. Employ an initial heuristic 𝐻 to adapt the schedule. 

2. Reapply the metaheuristic scheduler of [Egg24] to reduce the schedule’s tardiness. 

This section focuses on devising suitable initial heuristics to account for dynamic stream sets. To this 

end, we identify two central requirements: First, 𝐻 should be fast, i.e., instead of relying on an 

exhaustive search to find an optimal solution, it should leave optimizing the schedule to the second 

phase. Second, 𝐻 should avoid modifying the schedule for streams that are unaffected by the dynamic 

stream set change to ease configuring the TSN bridges with the updated gate control lists. 

More concretely, the initial heuristic 𝐻 receives the initial stream set 𝐹 which is subsequently modified 

by removing the leaving streams 𝐹𝑙  and by adding the joining streams 𝐹𝑗, i.e., 𝐹 ← (𝐹 \ 𝐹𝑙) ∪ 𝐹𝑗. We 

start by removing 𝐹𝑙  (see Section 3.5.1) to introduce additional gaps in the schedule that can be filled 

by adding 𝐹𝑗 (see Section 3.5.2). 
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3.5.1 Adaptation to Leaving Streams 
Employing the shuffle graphs of Section 3.4.1 to represent wireless TSN schedules, we devise a simple 

adaptation strategy that replaces transmission operations 𝑂𝑓𝑖

𝑗
 of leaving frames 𝑓𝑖  ∈ 𝐹𝑙  with 

placeholders 𝑂𝑝𝑖

𝑗
 (see Figure 24). When deriving the TSN configuration thereafter, the placeholders 

are used to retain the original transmissions of 𝐹 \ 𝐹𝑙 = {𝑓1, 𝑓3} while no GCL entries are set for 𝑂𝑝2

𝑗
.   

 

Figure 24: Shuffle graph after stream 𝑓2 is removed and replaced by a placeholder 𝑝2 

From a practical perspective, it is not required to directly compute a TSN configuration for the 

intermediate step 𝐹 \ 𝐹𝑙. It is therefore sufficient to simply mark each 𝑓 ∈ 𝐹𝑙  as removed, indicating 

the subsequent routines to handle each operation 𝑂𝑓
𝑗
 as a placeholder. This process can therefore be 

completed within time #𝐹𝑙. Still, to avoid traversing an overwhelming amount of placeholder 

operations in the shuffle graph, it is advisable to merge neighboring placeholders that share the same 

transmission link.  

3.5.2 Adaptation to Joining Streams 
For every joined stream 𝑓 ∈ 𝐹𝑗, we sequentially determine the schedule of each hop in 𝑓’s route.  That 

is, for each (unscheduled) operation 𝑂𝑓
𝑖 , we initially compute the current transmission order 𝑓1 →

𝑓2 → ⋯  → 𝑓𝑘 of already scheduled frames. Thereafter, the heuristic 𝐻 aims to find a suitable position 

𝑗 where 𝑓 should be inserted, i.e., yielding the updated transmission order 𝑓1 → ⋯ 𝑓 → 𝑓𝑗 → ⋯ 𝑓𝑘 at 

the 𝑖th transmission hop of 𝑓’s route. 

We can define a simple upper bound for the position 𝑗 as follows: 𝑓 must not be scheduled after 𝑓𝑘 if 

𝑓’s resulting transmission time is after its effective deadline. The effective deadline of 𝑂𝑓
𝑖  is 

determined by subtracting 𝑓’s remaining transmission delays from its deadline at the listener. In other 

words, if 𝑓 would be transmitted at its 𝑖th hop after 𝑓𝑘, it would no longer be able to satisfy its end-

to-end latency requirement.  

To determine a lower bound for position 𝑗, we include the requirement that 𝐻 should avoid modifying 

the schedule for unaffected streams 𝑓𝑘 ∈ 𝐹 \ 𝐹𝑙. Hence, 𝑓 may only be inserted before 𝑓𝑘 if the 

transmission offset of 𝑓𝑘 is not delayed, e.g., there exists a sufficiently large placeholder between 𝑓𝑘−1 

and 𝑓𝑘 in the shuffle graph.  
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4 Conclusions & Future Work 
In this report, we have presented system concepts and algorithms to implement dependable end-to-

end communication in dynamic systems of wired and, in particular, wireless network elements 

(wireless TSN bridges called 6GDetCom nodes). With respect to system concepts, we presented: 

• A YANG data model to model dynamic stochastic packet delay (port-to-port delay). This model 

provides the information required to calculate and adapt end-to-end schedules to the 

network control logic (algorithms) executed by the CNC. 

• Proactive and reactive approaches based on the NETCONF protocol to trigger the adaptation 

of end-to-end schedules and reduce the time while which the end-to-end schedule might be 

broken during the transition phase. 

• The wireless by-pass characteristic to enhance path redundancy and reduce the complexity of 

end-to-end scheduling. 

• Different algorithms to (a) maximize reliability under dynamic packet delay, (b) enable fast 

adaptation by modifying existing schedules (instead of starting from scratch), (c) enable 

graceful degradation under degrading packet delay. 

Altogether, these novel concepts make a large step towards dependable communication in dynamic 

wireless 6G systems that goes significantly beyond the assumptions made for “deterministic” wired 

systems.   

As a next step, we relax the assumption to operate in a single domain with a global view onto all 

system parameters and consider multi-domain systems. In such multi-domain systems, it will become 

crucial to divide the control among the different domains of a larger or administratively distributed 

system. Obviously, this step from a single fully centralized system to multiple interacting systems 

poses new challenges for end-to-end scheduling spanning now paths over multiple domains. This leads 

to new questions such as how to split the end-to-end budget of end-to-end delay between the 

different domains and how to “divide-and conquer” the end-to-end system? 
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List of abbreviations 
AGV Automated Guided Vehicle 

BW Bandwidth 

CNC Centralized Network Controller  

CoAP Constrained Application Protocol 

DetNet Deterministic Networking 

DGM Disjunctive Graph Model 

FIFO First in, first out 

GCD Greatest Common Divisor 

GCL Gate Control List 

JSON Java Script Object Notation 

KPI Key Performance Indicator 

NETCONF Network Configuration Protocol 

PD Packet Delay 

PDC Packet Delay Correction 

PDV Packet Delay Variation 

PLC Programmable Logic Controller 

PSFP Per-Stream Filtering and Policing 

PTP Precision Time Protocol (IEEE 1588) 

RPC Remote Procedure Call 

QoS Quality of Service 

RESTCONF Representational State Transfer Configuration 

SOAP Simple Object Access Protocol 

SSH Secure Shell 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

TSC Time-Sensitive Communication 

TSN Time Sensitive Networking 

VLAN Virtual LAN 

XML eXtensible Markup Language 

YANG Yet Another Next Generation 

Table 1: List of abbreviations 
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Terms and Definitions 
6GDetCom node A wireless TSN bridge using 6G technology for implementing the wireless 

transmission. 

Asynchronous Traffic 
Shaper 

A packet scheduling mechanism defined in the TSN standard IEEE 
802.1Qcr. 

Augmented Reality Presentation concept that combines physical (real) world and computer- 
generated content. 

Automated guided 
vehicle 

A vehicle automatically following a given path using sensors, e.g., on a 
shop floor in a factory. 

Automatic repeat 
request 

Protocol to control errors by automatically repeating erroneous and 
dropped frames. 

Bridge A layer 2 network element forwarding packets between network 
segments in an Ethernet network. 

Bridge delay See port-to-port delay. 

Centralized Network 
Controller 

An entity of the network control plane that controls network elements 
like bridges based on a global view onto the network. 

Control plane Part of a network responsible for controlling the functions of the network 
data plane, e.g., configuration of forwarding tables. 

Cyber Physical System     A system integrating (virtual) compute resources and physical entities like 
physical machines on a shop floor or other physical objects. 

Data plane      Part of a network responsible for transporting data between source and 
destination (packet forwarding). 

Dependability     In the context of real-time communication, dependability refers to the 
ability of a system or software to consistently deliver the expected 
functionality and performance while ensuring its correctness and 
reliability. It encompasses several key attributes that are crucial for real-
time systems, including availability, reliability (see below), safety, fault 
tolerance, timeliness, and predictability. 

Deterministic 
Networking    

A standardization effort by the Internet Engineering Taskforce (IETF) to 
enable communication with bounded loss, packet delay, packet delay 
variation over layer 3 (routed) networks. 

Earliest Deadline First  Real-time scheduling strategy always selecting the queued item with the 
earliest deadline for execution or forwarding. 

Edge cloud A compute (server) infrastructure located close to the stations executing 
applications to reduce latency between applications and services hosted 
in the infrastructure and to increase the performance and efficiency of 
clients, e.g., by offloading resource-intensive tasks to the edge cloud 
servers. 

EtherCat Real-time Ethernet technology. 

Extended Reality Collective term for Augmented Reality (AR), Virtual Reality (VR), and 
Mixed Reality (MR). 

FIFO Scheduling strategy selecting the queued item next that has been waiting 
the longest for execution or forwarding. 



 
Document: Report on Optimized Deterministic End-to-End 
Schedules for Dynamic Systems 

 Version: v1.0 
Date: 27-06-2024 

Dissemination level: Public 
Status: Final 

 
 

101096504  DETERMINISTIC6G  64 

Frame preemption A network mechanism to interrupt (preempt) lower-priority frames in 
transmission by higher-priority frames and later resume the transmission 
of the lower-priority frame, defined in TSN standard IEEE 802.1Qbu. 

Frame replication Sending multiple copies (replicas) of a frame over different network paths 
to increase reliability, defined in TSN standard IEEE 802.1CB. 

Gate Mechanism in a TSN bridge to define which egress queues of a port are 
eligible to forward packets. 

Gate Control List Table defining when to open and close gates at a TSN bridge according to 
a scheduling table. 

Graceful degradation In the context of end-to-end scheduling: capability to maintain reduced 
guarantees with respect to timeliness and reliability instead of steeply 
dropping to no guarantees. 

Jitter Variation in packet delay. 

Listener TSN term for receiver or destination of packets. 

Mixed Reality Systems combining physical (real) objects and computer-generated 
objects. 

Offloading Executing an application on a remote machine, often used with resource-
poor mobile devices that offload resource-intensive tasks to a server 
infrastructure to increase efficiency. 

Packet Delay Delay of a packet between two reference points such as starting the 
transmission of a packet at the source station and receiving the packet at 
a network element or end station (destination). 

Packet Delay Variation  Packet delay variation describes the amount of variation of the latencies 
perceived when a series of messages is transmitted from a given sender 
to a given receiver over a given network. 

Packet Scheduling Function of the network data plane to decide when to forward queued 
packets by bridges or routers. 

Per-Stream Filtering 
and Policing 

Mechanisms defined in the TSN standard IEEE 802.1Qci for frame 
counting, filtering, policing, and service class selection. 

Port-to-port delay The delay that a packet experiences between the ingress port (packet 
received by bridge) and egress port (packet transmitted bridge) of a 
bridge. 

Powerlink Real-time Ethernet technology. 

Precision Time 
Protocol 

A network protocol and mechanisms to synchronize clocks at different 
devices in a networked system, defined in the standard IEEE 802.1AS. 

Priority Code Point The priority code point is a header field defining the priority of an 
Ethernet frame by a number in the range from 0 to 7. 

PROFINET A real-time Ethernet technology. 

Programmable Logic 
Controller 

Device (computer) to automatically control a manufacturing process, e.g., 
robots or machines on a shop floor. 

Radio Access Network    A part of a mobile communication network providing access of end 
stations like mobile phones to the core network using a radio technology. 

Reliability Reliability describes the probability that a system will meet its expected 
performance metrics and perform its intended functions consistently and 
correctly over time. 
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Robust schedule A schedule that provides guarantees for uncertain parameters.   

Software-Defined 
Networking 

An approach for network management based on concepts such as 
logically centralized network management. 

Southbound interface  Interface between Centralized Network Controller and bridges in the 
network control plane. 

Talker TSN term for sender or source of packets. 

Time-Aware Shaper A packet scheduling mechanism for traffic according to the TSN standard 
IEEE 802.1Qbv (time-driven scheduling). 

Time-Sensitive 
Networking 

Collective term for a set of standards by the Institute of Electrical and 
Electronics Engineering (IEEE) for real-time communication over IEEE 802 
networks. 

Virtual LAN A logical (virtual) local-area network implemented atop a physical layer 2 
network (Ethernet). 

Virtual Reality Presentation concept that presents the user with computer generated 
three-dimensional content. 

Wireless by-pass By-passing several wireless links by a wireless network. 

Table 2: Terms and Definitions 

5 Appendix 

5.1 YANG Data Model 
The full YANG data model for modelling stochastic PD as histograms is shown below. The YANG 

module can also be downloaded from Github6. 

module port-to-port-delay { 

    yang-version "1.1"; 

 

    namespace urn:det6g:port-to-port-delay; 

        

    prefix det6g; 

 

    import ieee802-types { 

        prefix ieee802; 

    } 

   

    import ieee802-dot1q-types { 

        prefix dot1qtypes; 

    } 

 

    import ieee802-dot1q-bridge { 

        prefix dot1q-bridge; 

    } 

     

    organization DETERMINISTIC6G; 

 

    contact "https://deterministic6g.eu/"; 

    description 

 
6 https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/ 

https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/
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        "A YANG model for modelling stochastic port-to-port delay."; 

 

    revision "2024-05-21" { 

        description "Initial revision"; 

        reference "Deliverable D3.4 of DETERMINISTIC6G project"; 

    } 

 

    grouping delay-histogram { 

        description 

            "Delay histogram"; 

        leaf start { 

            type uint64; 

            description 

                "The start value of the first bin in nano-seconds. 

                If not specified, the first bin starts at 0."; 

        } 

    leaf bin-count { 

        type uint32; 

        mandatory true; 

        description 

            "Number of bins."; 

    } 

    list bin { 

        description 

            "Bins of histogram."; 

        key index; 

        leaf index { 

            type uint32; 

        mandatory true; 

        description 

            "The index of this bin."; 

            } 

        leaf width { 

            type uint64; 

        mandatory true; 

                description 

                "The width of this bin in nano-seconds."; 

            } 

        leaf count { 

                type uint32; 

        mandatory true; 

            description 

            "Count of values in this bin."; 

            } 

    } 

    leaf tail { 

            type uint32; 

        description 

            "Count of values in the tail of the histogram 

            after the upper bound of last bin until infinity. 

            Can be used to define an unbounded distribution."; 

        } 

    } 
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    augment "/dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component" { 

        container port-to-port-delays { 

            config false; 

            list port-to-port-delay { 

                key "ingress-port egress-port traffic-class index"; 

                leaf ingress-port { 

                    type dot1qtypes:port-number-type; 

                    config false; 

                    mandatory true; 

                    description 

                        "Unique number of ingress port."; 

                } 

                leaf egress-port { 

                    type dot1qtypes:port-number-type; 

                    config false; 

                    mandatory true; 

                    description 

                        "Unique number of egress port."; 

                } 

                leaf traffic-class { 

                    type dot1qtypes:traffic-class-type; 

                    config false; 

                    mandatory true; 

                    description 

                        "Traffic class (0..7)"; 

                } 

                leaf index { 

                    type uint16; 

                    config false; 

                    mandatory true; 

                    description 

                        "Index to define multiple histograms per 

                        port-pair and traffic class."; 

                } 

                uses delay-histogram; 

            } 

            leaf dependency-class { 

                type enumeration { 

                    enum "independent"; 

                    enum "dependent"; 

                } 

                description 

                    "Are the given delays only applicable under 

                    certain conditions (e.g., for frames of 

                    certain length)?"; 

            } 

            container validity-period { 

                container valid-from { 

                    description 

                        "Given delays are only valid at or 

                        after this point in time, specified as 
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                        PTP timestamp."; 

                    uses ieee802:ptp-time-grouping; 

                } 

                container valid-until { 

                    description 

                        "Given delays are only valid until  

                        this point in time, specified as PTP 

                        timestamp."; 

                    uses ieee802:ptp-time-grouping; 

                } 

            } 

        } 

    } 

 

    augment "/dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component/port-to-port-delays" { 

        when "dependency-class = 'dependent'"; 

        container dependencies { 

            container length-dependency { 

                leaf min-frame-length { 

                    type uint32; 

                    description 

                        "Values apply only to frames equal or 

                        greater than this value."; 

                } 

                leaf max-frame-length { 

                    type uint32; 

                    description 

                        "Values apply only to frames equal or 

                        smaller than this value."; 

                } 

            } 

        } 

    } 

} 

 

 


