
The DETERMINISTIC6G project has received funding from the European
Union’s Horizon Europe research and innovation programme under
grant agreement no 1010965604.

Report on Optimized
Deterministic End-to-
End Schedules for
Dynamic Systems
D3.4

Report on Optimized Deterministic End-to-End Schedules
for Dynamic Systems
Grant agreement number: 101096504

Project title: Deterministic E2E communication with 6G

Project acronym: DETERMINISTIC6G

Project website:

Programme:

Deterministic6g.eu
EU JU SNS Phase 1

Deliverable type: Public Report

Deliverable reference

number:

D3.4

Contributing workpackages: WP3

Dissemination level: PUBLIC

Due date: 06-30-2024

Actual submission date: 06-27-2024

Responsible organization: USTUTT

Editor(s): Frank Dürr, Simon Egger, Lucas Haug

Version number: v1.0

Status: Final Version

Short abstract: This report describes the concepts and algorithms for optimizing
and dynamically adapting end-to-end schedules with wired and
wireless network elements (TSN bridges) to enable deterministic
end-to-end guarantees in dynamic environments including
mobility, dynamic packet delay, and dynamic stream sets.
Different system concepts are proposed to cope with these
dynamic effects, such as a YANG data model to describe dynamic
stochastic packet delay, different approaches based on the
NETCONF protocol to reactively and proactively adapt end-to-end
schedules, and a wireless by-pass approach that simplifies end-
to-end scheduling and its adaptation. Moreover, several
algorithms for calculating and adapting robust end-to-end
schedules for scheduled traffic according to IEEE 802.1Qbv (time-
aware shaper) are proposed. These algorithms feature the
maximization of robustness, fast adaptation through highly
optimized algorithms, graceful degradation of the quality of
service under increasing packet delay, and schedules optimized
for the smooth handover of mobile stations.

Keywords: time-sensitive networking, TSN, dependable communication,
IEEE 802.1Qbv, dynamic wireless systems, 5G, 6G, packet delay,
end-to-end scheduling, algorithms, graceful degradation,
heuristics, wireless by-pass, YANG, data model, NETCONF,
events, adaptation, incremental scheduling, dynamics

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 1

Contributor(s): Joachim Sachs (EDD)
Jose Costa Requena (CMC)
James Gross (KTH)
Gourav Prateek Sharma (KTH)
Frank Dürr (USTUTT)
Simon Egger (USTUTT)
Lucas Haug (USTUTT)
János Farkas (ETH)
Ferenc Fejes (ETH)
Balázs Varga (ETH)
Marilet De Andrade Jardim (EAB)
Oliver Höftberger (B&R)

Reviewers: Oliver Höftberger (B&R)
Marilet De Andrade Jardim (EAB)
Ferenc Fejes (ETH)

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 2

Revision History
02/04/2024 Table of contents

04/06/2024 Internal review

20/06/2024 Revision after internal review

21/06/2014 PMT review

27/06/2024 Final version

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 3

Disclaimer
This work has been performed in the framework of the Horizon Europe project DETERMINISTIC6G co-

funded by the EU. This information reflects the consortium’s view, but the consortium is not liable for

any use that may be made of any of the information contained therein. This deliverable has been

submitted to the EU commission, but it has not been reviewed and it has not been accepted by the

EU commission yet.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 4

Executive summary
Wireless systems, such as 5G or 6G, are dynamic systems by nature. Firstly, packets experience a

packet delay while passing through wireless network elements. In contrast to wired networks, this

packet delay is stochastic with a relatively large packet delay variation. Moreover, this packet delay is

not static but dynamic since it depends on many dynamic factors that influence the wireless

transmission such as shadowing by obstacles, scattering and diffraction of the signal, multi-path

propagation, fading, etc. On upper layers, these physical effects induce a dynamic bit error rate and

frame error rate, which leads to a variable number of retransmissions. Therefore, the probability

distribution of the stochastic packet delay is dynamic and might change its mean, variance, etc.

Secondly, mobility of end stations intensifies these adverse effects, for instance, due to the

requirement to change base stations. Again, this leads to dynamic packet delay distributions. Finally,

the set of streams communicated between sender (i.e., talker in terms of Time Sensitive Networking)

and receivers (i.e., listeners) is often dynamic. This means, new streams might be added or old streams

might be removed at runtime. In particular, new streams to be added dynamically are challenging

since this requires the adaptation of the network configuration such as end-to-end schedules to

provide end-to-end delay guarantees. This adaptation must be carried out carefully, without violating

the guarantees of already admitted streams.

All these dynamic effects pose a big challenge for offering a dependable end-to-end communication

service. In this report, we focus on 6G systems implemented as part of a TSN network which consists

of wired and wireless bridges. A wireless bridge corresponds hereby to a 6G system (i.e. 6G network

and 6G User Equipment (UE), which is in its entirety represented as a virtual TSN bridge, following the

TSN integration model specified for 5G [DET23-D31, 3GPP24-23501]. Such virtual (wireless) TSN

bridges we refer to as 6GDetCom nodes1. We focus on end-to-end scheduling of scheduled traffic

according to the IEEE 802.1Qbv standard, which defines a time-driven scheduling mechanism, also

known as time-aware shaping. Time-aware shaping requires the calculation of timetables (i.e.,

schedules) to control the forwarding of packets from egress queues of bridges. Since existing work

does often not assume the dynamic effects mentioned above, the problem of calculating robust

schedules and adapting schedules to these dynamic effects have not been considered in literature or

only with a very limited scope such as dynamic stream sets.

In this report, we present system mechanisms and algorithms for robust and adaptive end-to-end

scheduling that can cope with the dynamic effects introduced above. In more detail, our main

contributions include:

• A YANG data model to describe dynamic stochastic packet delay. This model provides the

essential information about packet delay to the Centralized Network Controller executing the

algorithms for calculating and adapting end-to-end schedules.

• Different approaches based on the NETCONF protocol and our YANG data model to trigger

dynamic adaption of end-to-end schedules. This includes reactive approaches that “only”

react to dynamic changes (break-before-make) and proactive approaches that utilize

advanced prediction mechanisms for dynamic packet delay to implement a “make-before-

break” approach.

1 While this report focuses on integrating a future 6G network into a TSN network, the approach is equally
applicable to 5G systems.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 5

• We show how to exploit the characteristics of a so-called wireless by-pass that takes

advantage of the large reach of wireless links to optimize the network topology.

• Different algorithms to calculate robust and adaptive end-to-end schedules for time-aware

shaping. These algorithms enable the maximization of robustness to dynamic packet delay

distributions to avoid the costly adaptation of schedules as long as possible, fast adaptation

of existing schedules using highly optimized algorithms, and graceful degradation of

guarantees provided by schedules under increasing packet delay.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 6

Contents
Revision History .. 2

Disclaimer.. 3

Executive summary ... 4

1 Introduction .. 8

1.1 DETERMINISTIC6G Approach ... 9

1.2 Background on Adaptation of End-to-End Scheduling .. 12

1.3 Contributions of the Report .. 13

1.4 Relation to Other Work Packages.. 14

1.5 Structure and Scope of the Document .. 15

2 Control Plane Interfaces and Data Models for Dynamic Adaptation ... 15

2.1 Background and Related Work .. 16

2.1.1 YANG Data Modelling Language ... 16

2.1.2 NETCONF Protocol .. 17

2.1.3 Related Existing YANG Data Models ... 20

2.2 System Model .. 21

2.3 YANG Data Models for Packet Delay ... 24

2.4 Interaction between Scheduler and Application ... 31

2.4.1 Incremental Scheduling ... 31

2.4.2 Reaction to Degrading Application Performance ... 31

2.5 Interaction in Control Plane to Adapt to Dynamic Packet Delay ... 32

2.5.1 Reactive Schedule Adaptation .. 32

2.5.2 Proactive Schedule Adaptation ... 37

2.6 Network Topology with Wireless By-Pass ... 40

2.6.1 The Wireless By-pass ... 40

2.6.2 Combined Wireless & Wireline Architecture .. 41

2.6.3 Impact of Improved Architecture .. 43

3 Algorithms for Planning Dynamic Schedules .. 44

3.1 Overview .. 44

3.2 Background and Related Work .. 45

3.3 Maximize Reliability under Dynamic Packet Delay.. 46

3.3.1 Optimization goals .. 47

3.3.2 Evaluation .. 49

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 7

3.4 Adaptation to Dynamic Packet Delays .. 50

3.4.1 Shuffle Graphs as a Graphical Representation of TSN Schedules 51

3.4.2 Linear-Time Adaptation Strategy .. 55

3.4.3 Evaluation .. 56

3.4.4 Discussion .. 57

3.5 Adaptation to Dynamic Stream Sets.. 57

3.5.1 Adaptation to Leaving Streams ... 58

3.5.2 Adaptation to Joining Streams .. 58

4 Conclusions & Future Work .. 59

References .. 59

List of abbreviations .. 62

Terms and Definitions ... 63

5 Appendix ... 65

5.1 YANG Data Model .. 65

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 8

1 Introduction
This report describes system concepts and algorithms for planning end-to-end packet schedules for

dependable end-to-end communication over networks that comprise wired and wireless network

elements, including dynamic 5G/6G systems. In particular, we focus on dynamic Time-Sensitive

Networking (TSN) systems including wireless bridges and wired bridges along the end-to-end

communication path between applications (i.e., talkers and listeners), as well as on the adaptation of

such systems.

There are different reasons for such a TSN system including wired and wireless bridges to change

dynamically and requiring end-to-end adaptation:

• Dynamic stream sets: In many scenarios, it is unrealistic to assume that all streams between

talkers and listeners are known a priori, i.e., at system design time, and do not change

anymore at runtime. Dynamically adding new streams at runtime requires the adaptation

of end-to-end schedules, which is also known as incremental scheduling since streams are

added to the schedule incrementally. Such incremental changes must be made carefully in

order not to violate the timing guarantees of already admitted streams. Moreover,

schedules must be optimized to be extensible in the future.

• Dynamic packet delay characteristics: The packet delay (PD) of wireless bridges is

significantly greater than the PD of wired bridges and additionally has greater packet delay

variation (PDV). The characteristics of PD can be modelled as non-stationary stochastic

processes, i.e., parameters of the stochastic PD distribution such as mean or variance are

not constant over time. Or in plain words: The characteristics of non-stationary PD

distributions change dynamically over time. Therefore, we also refer to such PD

distributions by the term dynamic PD distributions in the following to highlight the fact that

their parameters are non-constant but dynamic. In order to provide dependable end-to-end

communication from the TSN perspective at all times, end-to-end schedules must be

adapted to these dynamically changing PD characteristics.

• Mobility: End stations might be mobile. Although mobility is handled within the 5G/6G

system and, therefore, transparent (i.e., not “visible”) to the TSN network, mobility might

also cause PD distributions to change over time depending on the environment (e.g.,

obstacles, distance to base station, etc.). As described above for dynamic PD distributions,

this requires the adaptation of end-to-end schedules.

It is important to note that end-to-end adaptation of the TSN network is only one possibility of

adaptation. Adaptation can also take place within the 5G/6G system (a wireless bridge), e.g., by

resource allocation or scheduling of radio resources, i.e., by actively influencing the PD distributions

instead of just taking PD distributions as input to the end-to-end scheduling problem in the TSN

network. In fact, end-to-end adaptation is a relatively heavy-weight and complex (slow) process,

potentially involving many TSN bridges along the end-to-end path and complex computational tasks

for calculating end-to-end schedules, whereas the adaptation within the 5G/6G system is affecting

only a wireless bridge. In fact, end-to-end adaptation and 5G/6G adaptation complement each other,

ideally in a holistic approach. This report is only focused on the end-to-end adaptation of TSN

schedules including wireless TSN bridges along the path. Adaptation within the 5G/6G system or a

holistic approach integrating end-to-end and 5G/6G adaptation are beyond the scope of this report.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 9

On the one hand, the goal of this report is to present system concepts that enable the adaptation of

end-to-end schedules. This includes YANG data models and network control plane interfaces based

on the NETCONF protocol for providing dynamic system information – in particular, dynamic packet

delay distributions – to a logically centralized network controller performing reactive (when PD

distributions have changed) or proactive (based on PD prediction) dynamic re-planning of schedules.

Moreover, we describe how to exploit the characteristic properties of wireless communication (in

particular its long reach) to implement a so-called wireless by-pass, which reduces the number of end-

to-end hops and simplifies the complex calculation of end-to-end schedules. Consequently, the

wireless by-pass also simplifies adaption by reducing the time to adapt due to shorter times to

calculate new end-to-end schedules.

On the other hand, we present algorithms for (re-)planning end-to-end schedules targeting scheduled

traffic according to IEEE 802.1Qbv. Different approaches will be presented for dealing with dynamic

stream sets and dynamic packet delay predictions. These algorithms provide different interesting

features such as maximizing robustness to dynamic PD distributions, fast rescheduling with dynamic

PD distributions and dynamic stream sets, and graceful degradation under degraded channel

conditions.

For readers who are not familiar with the DETERMINISTIC6G project, we start with a brief general

overview of the project to keep this document self-contained and set the stage for the presentation

of the concepts for adaptive end-to-end scheduling. Readers who already know the DETERMINISTIC6G

project could skip this sub-section and directly start with Section 0 motivating the need for adaptation

to realize dependable end-to-end communication in dynamic systems. Afterwards, we described the

relation to other work packages of the project, before giving an overview of the remainder of this

document.

1.1 DETERMINISTIC6G Approach
Digital transformation of industries and society is resulting in the emergence of a larger family of time-

critical services with needs for high availability and which present unique requirements distinct from

traditional Internet applications like video streaming or web browsing. Time-critical services are

already known in industrial automation; for example, an industrial control application that might

require an end-to-end “over the loop” (i.e., from the sensor to the controller back to the actuator)

latency of 2 ms and with a communication service requirement of 99.9999 % [3GPP23-22261]. But

with the increasing digitalization similar requirements are appearing in a growing number of new

application domains, such as extended reality, autonomous vehicles, and adaptive manufacturing. The

general long-term trend of digitalization leads towards a Cyber-Physical Continuum where the

monitoring, control and maintenance functionality is moved from physical objects (like a robot, a

machine, or a tablet device) to a compute platform at some other location, where a digital

representation – or digital twin – of the object is operated. Such Cyber Physical System (CPS)

applications need a frequent and consistent information exchange between the digital and physical

twins. Several technology developments in the ICT-sector drive this transition. The proliferation of

(edge-) cloud compute paradigms provide new cost-efficient and scalable computing capabilities, that

are often more efficient to maintain and evolve compared to embedded compute solutions integrated

into the physical objects. It also enables the creation of digital twins as a tool for advanced monitoring,

prediction and automation of system components and improved coordination of systems of systems.

New techniques based on Machine Learning can be applied in application design, that can operate

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 10

over large data sets and profit from scalable compute infrastructure. Offloading compute functionality

can also reduce spatial footprint, weight, cost, and energy consumption of physical objects, which is

in particular important for mobile components, like vehicles, mobile robots, or wearable devices. This

approach leads to an increasing need for communication between physical and digital objects, and

this communication can span over multiple communication and computational domains.

Communication in this cyber-physical world often includes closed-loop control interactions which can

have stringent end-to-end KPIs (e.g., minimum, and maximum packet delay) requirements over the

entire loop. In addition, many operations may have high criticality, such as business-critical tasks or

even safety relevant operations. Therefore, it is required to provide dependable time-critical

communication which provides communication service-assurance to achieve the agreed service

requirements.

Time-critical communication has in the past been mainly prevalent in industrial automation scenarios

with special compute hardware like Programmable Logic Controllers (PLC), and based on proprietary,

mutually incompatible wired communication technologies, such as Powerlink and EtherCat, which is

limited to local and isolated network domains and which is configured to the specific purpose of the

local applications. With the standardization of TSN, and Deterministic Networking (DetNet), similar

capabilities are being introduced into the Ethernet and IP networking technologies, which thereby

provide a converged multi-service network allowing time critical applications in a managed network

infrastructure allowing for consistent performance with zero packet loss and guaranteed low and

bounded latency. The underlying principles are that the network elements (i.e. bridges or routers) and

the PLCs can provide a consistent and known performance with negligible stochastic variation, which

allows to manage the network configuration to the needs of time-critical applications with known

traffic characteristics and requirements. Furthermore, using interchangeable TSN hardware

components has economic benefits, avoids vendor lock-in and enables third-party support for

configuration and troubleshooting.

It turns out that several elements in the digitalization journey introduce characteristics that deviate

from the assumptions that are considered as baseline in the planning of deterministic networks. There

is often an assumption for compute and communication elements, and also applications, that any

stochastic behavior can be minimized such that the time characteristics of the element can be clearly

associated with tight minimum/maximum bounds. Cloud computing provides efficient scalable

compute, but introduces uncertainty in execution times; wireless communications provides flexibility

and simplicity, but with inherently stochastic components that lead to packet delay variations

exceeding significantly those found in wired counterparts; and applications embrace novel

technologies (e.g. ML-based or machine-vision-based control) where the traffic characteristics deviate

from the strictly deterministic behavior of old-school control. In addition, there will be an increase in

dynamic behavior where characteristics of applications, and network or compute elements may

change over time in contrast to a static behavior that does not change during runtime. It turns out

that these deviations of stochastic characteristics make traditional approaches to planning and

configuration of end-to-end time-critical communication networks such as TSN or DetNet, fall short in

their performance regarding service performance, scalability and efficiency. Instead, a revolutionary

approach to the design, planning and operation of time-critical networks is needed that fully embraces

the variability but also dynamic changes that come at the side of introducing wireless connectivity,

cloud compute and application innovation. DETERMINISTIC6G has as objective to address these

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 11

challenges, including the planning of resource allocation for diverse time-critical services end-to-end

over multiple domains, providing efficient resource usage and a scalable solution [SPS+23].

DETERMINISTIC6G takes a novel approach towards converged future infrastructures for scalable

cyber-physical systems deployment. With respect to networked infrastructures, DETERMINISTIC6G

advocates (I) the acceptance and integration of stochastic elements (like wireless links and

computational elements) with respect to their stochastic behavior captured through either short-term

or longer-term envelopes. Monitoring and prediction of KPIs, for instance latency or reliability, can be

leveraged to make individual elements plannable despite a remaining stochastic variance.

Nevertheless, system enhancements to mitigate stochastic variances in communication and compute

elements are also developed. (II) Next, DETERMINISTIC6G attempts the management of the entire

end-to-end interaction loop (e.g. the control loop) with the underlying stochastic characteristics,

especially embracing the integration of compute elements. (III) Finally, due to unavoidable stochastic

degradations of individual elements, DETERMINISTIC6G advocates allowing for adaptation between

applications running over such converged and managed network infrastructures. The idea is to

introduce flexibility in the application operation such that its requirements can be adjusted at runtime

based on prevailing system conditions. This encompasses a larger set of application requirements that

(a) can also accept stochastic end-to-end KPIs, and (b) that possibly can adapt end-to-end KPI

requirements at run-time in harmonization with the networked infrastructure. DETERMINISTIC6G

builds on a notion of time-awareness, by ensuring accurate and reliable time synchronicity while also

ensuring security-by-design for such dependable time-critical communications. Generally, a notion of

deterministic communication (where all behavior of network and compute nodes and applications is

pre-determined) is extended towards dependable time-critical communication, where the focus is on

ensuring that the communication (and compute) characteristics are managed in order to provide the

KPIs and reliability levels that are required by the application. DETERMINISTIC6G facilitates

architectures and algorithms for scalable and converged future network infrastructures that enable

dependable time-critical communication end-to-end, across domains and including 6G.

As mentioned above, the wireless systems that are considered in DETERMINISTIC6G have stochastic

and dynamic behavior. To cope with these challenging properties, the system must be able to adapt.

In this report, the focus is on the adaptation of end-to-end schedules according to the IEEE 802.1Qbv

TSN standard [IEEE15-8021Qbv]. YANG data models are presented to describe and provide dynamic

packet delay, which can be integrated into existing TSN standard YANG models. The NETCONF protocol

is applied to transfer dynamic delay information from bridges and to trigger the adaptation of end-to-

end schedules reactively and proactively using packet delay prediction concepts from the project. We

describe how to exploit the properties of wireless communication to implement a so-called wireless

by-pass, which by-passes several wired hops, which also simplifies the complex task of end-to-end

scheduling. Moreover, optimized algorithms are presented to calculate and adapt end-to-end

schedules for dynamic stream sets and for dynamic PD distributions, which induce novel

characteristics such as maximization of robustness to dynamic PD distributions, fast re-scheduling with

dynamic PD distributions and stream sets, and graceful degradation under degraded channel

conditions.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 12

1.2 Background on Adaptation of End-to-End Scheduling
As already mentioned above, there are different reasons for a TSN system consisting of wired and

wireless bridges to change dynamically and requiring the adaptation of end-to-end scheduling. One

reason is the need to dynamically add or delete streams between talkers and listeners. For instance,

the popular “plug & produce” paradigm envisions that network entities (i.e., individual device,

machine modules, or whole machines) acting as talkers and listeners, can be added or removed

dynamically at runtime to a factory shop floor. These network entities should be integrated

automatically into the system when connected (“plugged in”) without interrupting the production

process, i.e., without first stopping, then reconfiguring, and finally restarting the system. Instead, the

system must be reconfigured “on-the-fly” without stopping on-going communication and services.

From a TSN perspective aiming for dependable real-time guarantees such as meeting deadlines

reliably, this means that schedules at bridges controlling the timely forwarding of real-time traffic

need to be adapted and deployed at runtime. So-called incremental scheduling approaches deal with

the problem of incrementally admitting new streams and adapting an existing schedule to

accommodate new streams (or remove old streams) without compromising the timing guarantees for

already admitted streams. The incremental scheduling problem has already received some attention

from industry and the research community in the field of TSN (see Section 3.2 for an overview of

related work). However, we will revisit this general problem in this report in the light of the specific

properties of wireless TSN systems, in particular, probabilistic PDs, requiring robust incremental

scheduling that can deal with uncertainty.

Another reason requiring adaptation, specifically in TSN networks including wireless bridges, is

dynamic PD distributions. In wireless systems, packet delay follows a stochastic PD distribution.

Typically, the PD distribution of wireless bridges has a significantly greater packet delay variation (PDV)

and is heavy-tailed, i.e., relatively large PD values overshadow other sources of uncertainty in wired

systems, where the probability values of the tail of the distribution might decrease exponentially.

Additionally, the PD distribution might change dynamically depending on the physical environment

causing adverse effects such as shadowing, reflection, diffraction, scattering, and slow fading of the

physical signal. The dynamic quality of the physical signal influences properties such as the bit error

rate and frame error rate, which in turn affect other mechanisms on higher layers such as the required

number of retransmissions to correctly receive a frame eventually. Altogether, this will manifest itself

in variable packet delay. Consequently, we cannot assume that the PD distribution is static. This has a

great impact onto end-to-end scheduling, which should ensure dependable communication in any

case. To deal with dynamic changes in PD distributions, we need several steps:

• First of all, the entity calculating end-to-end schedules must be made aware of the stochastic

PDs. According to one common model of network configuration in TSN, we assume that a

Centralized Network Controller (CNC) is in charge of calculating end-to-end schedules and

configuring all bridges along the path, based on a global view onto the network and streams.

To communicate stochastic PD information from bridges to the CNC, extended data models

are required beyond what has so far been defined in standards to model static worst-case

delay. To this end, we design and present extended YANG data models for describing PD.

Moreover, we present how this information can be transmitted over the standard NETCONF

protocol from bridges to CNC, either using query mechanisms or event-based communication.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 13

• Secondly, new algorithms for re-planning schedules based on the provided PD distributions

are required. This dynamic re-planning of schedules is a big challenge since calculating

schedules is, from a mathematical perspective, a very complex task, formally, often an NP-

hard problem. Therefore, theoretically well-founded approaches are required to quickly

generate new schedules in time. Furthermore, prediction approaches for stochastic PDs are

very useful since they can trigger proactive schedule re-planning (make before break) instead

of reacting when the old schedule is already compromised (break before make). Moreover,

we present a scheduling approach that allows for quickly calculating new schedules based on

an old schedule (instead of starting from scratch) and that gracefully degrades the streams’

timeliness and reliability guarantees for worsening channel conditions instead of steeply

dropping to no guarantees.

Finally, we also consider how to exploit the characteristic properties of wireless communication to

implement a so-called wireless by-pass. Due to the long reach of 6G networks, many wired hops can

be by-passed. The reduced number of hops simplifies end-to-end scheduling and, in turn, also allows

for faster adaptation due to a reduced time to calculate new end-to-end schedules.

1.3 Contributions of the Report
The overarching goal of this report is to present system concepts and algorithms to support

dependable end-to-end communication in mixed wired-wireless Time-Sensitive Networks that include

dynamic wireless (5G/6G) systems. In particular, we consider traffic scheduled according to IEEE

802.1Qbv (time-triggered traffic aka time-aware shaping) and the planning of schedules to cope with

dynamic stream sets, dynamic PD distributions, and mobility.

In more detail, we make the following contributions:

• YANG data models to describe PD as enabler for dynamic adaptation to PD. These models can

be considered an extension to the existing standard TSN models for static, deterministically

bounded delay as defined in [IEEE18-8021Qcc]. The new extended model is sufficiently flexible

to describe a spectrum of packet delay definitions, ranging from the classic deterministically

bounded PD to histograms of probability distributions derived from runtime PD

measurements or PD predictions.

• Concepts for reactive (“break-before-make”) and proactive (“make-before-break”)

adaptation of end-to-end schedules, which are based on the standard NETCONF protocol to

either query (poll) dynamic PD distributions by the CNC or use the publish/subscribe paradigm

to inform the CNC (YANG Push). Moreover, we show how to integrate PD prediction to

proactively trigger the adaptation of schedules. Basing these approaches on YANG and

NETCONF facilitates the later integration with existing standard TSN models and mechanisms.

• A set of novel algorithms for planning IEEE 802.1Qbv schedules for dynamic systems including

dynamic stream sets, dynamic PD distributions, and mobility. Depending on the algorithm,

these algorithms support the maximization of reliability for dynamic PD distributions, fast (re-

)planning for dynamic PD distributions and stream sets, and graceful degradation of the

streams’ timeliness guarantees for worsening channel conditions.

• A new wireless by-pass network architecture with wireless connectivity and optional

cloudification of industrial controllers that results in enhanced path redundancy, in improved

schedulability, and in additional flexibility to the network operator.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 14

1.4 Relation to Other Work Packages
The approaches presented in this report have been designed in WP3 and have several relations to

other work packages and deliverables (see Figure 1):

• WP1: The system concepts presented in this report are based on the use cases and

architecture designed in WP1 and presented in deliverable D1.1 DETERMINISTIC6G Use Cases

and Architecture Principles [DET23-D11] and deliverable D1.2 First Report on

DETERMINISTIC6G Architecture [DET24-D12], respectively.

• WP2: The approaches for proactive schedule adaptation rely on the prediction of the PD as

designed in WP2 and presented in deliverable D2.1 First Report on 6G Centric Enabler [DET23-

D21]. In general, the stochastic delay characteristics of a mobile network as shown in

[MTS+24] have a great impact onto end-to-end scheduling and require new algorithms to

calculate robust schedules. The approaches for adapting end-to-end schedules are also

related to the orthogonal approach of Packet Delay Correction (PDC) developed in WP2, which

aims for reducing the variation of packet delay (PDV). Reduced PDV simplifies the calculation

of end-to-end schedules in general and can be combined with the end-to-end scheduling

methods discussed in this report, which can deal with PDV.

• WP4: PD distributions are the foundation for calculating robust schedules coping with

stochastic PDs. PD distributions have been provided by the latency measurement framework

designed in WP4 and described in D4.2 Latency Measurement Framework [DET24-D42] and

[MNS+23, MSG23]. The validation of robust end-to-end scheduling concepts is performed

with the OMNeT++/INET-based network simulator developed in WP4 and described in

deliverable D4.1 DETERMINISTIC6G DetCom Simulator Framework Release 1 [DET23-D41].

Figure 1: Relation to other work packages

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 15

1.5 Structure and Scope of the Document
The rest of this report is structured as follows:

Section 2 focuses on the system aspects of adapting end-to-end scheduling in dynamic systems. The

dynamic re-planning of end-to-end schedules by the CNC relies on information from bridges, including

the current or predicted PD. To describe this information, we present a YANG data model in this

section for stochastic PD as well as different approaches to trigger adaptation reactively or proactively

based on NETCONF protocol mechanisms. The complete YANG data model can be found in the

Appendix of this report in Section 5.1 and the public project Github2. As another system aspect, we

discuss implications of the wireless by-pass characteristic to enhance path redundancy and to improve

schedulability.

Section 3 focuses on the algorithmic aspects of end-to-end schedule adaptation. We present different

algorithms for calculating and adapting time-triggered schedules according to IEEE 802.1Qbv. These

algorithms target the different causes of dynamic changes, namely, dynamic stream sets, dynamic PD

distributions, and mobility. They provide different features like maximizing reliability with dynamic PD

distributions, fast re-scheduling, or smooth handovers of mobile stations with minimal disruption of

the schedule.

Section 4 concludes this report with a summary and outlook onto future work.

2 Control Plane Interfaces and Data Models for Dynamic

Adaptation
In this section, we present the system aspects that enable the adaptation of end-to-end scheduling in

a dynamic system. This includes three major parts:

• Data models to describe the information required for dynamic adaptation. Here, we focus on

the stochastic PD distributions of wireless TSN bridges, which are fundamentally different

compared to their conventional wired counterparts. PDs of wireless bridges are stochastic in

nature with large packet delay variation (PDV). In contrast, existing TSN data models focus on

deterministically bounded static PDs. Therefore, we aim for a more flexible approach that

incorporates stochastic PDs from fine-grained online measurements. As the modelling

language, we use YANG similar to already existing standard by IEEE.

• Approaches to report dynamically changing PD distributions to the CNC to trigger re-planning

of end-to-end schedules. Here, we present reactive and proactive approaches based on the

standard southbound NETCONF protocol often used between TSN bridges and CNC. To

support proactive planning, we also present the integration of PD prediction mechanisms into

the framework.

• Utilizing the wireless by-pass characteristic to enhance path redundancy and reduce the

number of end-to-end hops by by-passing multiple wired links.

Next, we start by presenting the background and related work. Afterwards, we introduce our system

model, before presenting the main contributions of this section, namely, the extended YANG data

2 https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/

https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 16

model for PD distribution, reactive and proactive approaches to report dynamic PD distributions, and

the wireless by-pass characteristic.

2.1 Background and Related Work
In this sub-section, we briefly describe the technical background and standards required to understand

our contributions and serving as a starting point for our extensions. The two most important standard

technologies used in this report are: (i) the YANG data modelling language to describe information

provided by TSN bridges to the CNC and to configure the bridges by the CNC; (ii) the NETCONF protocol

for exchanging information between the bridges and CNC in the network control plane. Therefore, we

describe the main concepts of these technologies next. Please note that these brief introductions are

not meant as YANG or NETCONF tutorial. They only serve the purpose to keep the document self-

contained and readable for the readers not already familiar with YANG or NETCONF.

2.1.1 YANG Data Modelling Language
The YANG data modelling language is an IETF standard defined in [IETF16-RFC7950] to specify how

configuration data and state data of network elements – in our case, TSN bridges – is represented and

accessed. YANG data models are used by network configuration protocols such as NETCONF (as

described in the next sub-section), RESTCONF, or the Constrained Application Protocol (CoAP) to read

and write data from respectively to network elements. Due to the hierarchical structure of YANG data

models, YANG data model instances can be encoded to other hierarchical representations such as the

eXtensible Markup Language (XML) or Java Script Object Notation (JSON). In fact, NETCONF uses XML

documents to encode YANG data trees, therefore, we also often use XML documents as examples in

this report since most readers might be familiar with XML.

First of all, it is important to distinguish between so-called configuration data and state data.

Configuration data is readable and writeable model data, whereas state data is only readable. The

idea is that configuration data can be set by an external network controller to change the configuration

of a network element, whereas state data provides state information to network control that cannot

be altered by other entities.

YANG comes with several built-in data types such as strings, integer numbers with 8, 16, 32, and 64

bits, boolean, enumerations, etc., from which other data types can be derived.

YANG data models are hierarchical consisting of parent-child relationships between data nodes. The

container keyword is used to define a parent node containing further child nodes in its subtree. A

leaf node has no further child nodes but defines a value. An important modelling concept that we later

use are lists of nodes. List nodes can have unique keys specified by the key keyword. A key can also

consist of multiple values.

Nodes can also be grouped together using so-called groupings. In contrast to a container, a grouping

is just a shorthand notation to insert a set of nodes at other places with the uses statement. A

grouping does not define a parent-child relationship.

The config keyword distinguishes configuration data (read/write) from state data (read-only)

nodes. Declaring a data node as config = true declares configuration data; config = false

declares a node as state data node.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 17

A node from an existing YANG data model can be extended by further nodes or a complete sub-

hierarchy using the augment keyword.

Besides defining data models for configuration and state data, YANG data models can also include the

specification of Remote Procedure Calls (RPC), i.e., functions to be executed on a remote network

element. Closely related to RPCs are so-called actions. The difference between RPCs and actions is

that actions are connected to certain containers or list data nodes in the tree, i.e., the action is

executed on these nodes. NETCONF already defines several operations for retrieving state information

or changing the configuration of network elements as discussed in the next sub-section. Since we do

not introduce our own RPCs beyond what is already available with NETCONF, we do not further

describe the definition of RPCs in YANG data models and explain standard RPCs together with

NETCONF below.

Also, notifications can be defined with YANG. Similar to actions, notifications can be connected to data

nodes (containers, list data nodes).

2.1.2 NETCONF Protocol
The Network Configuration Protocol (NETCONF) is a management protocol to manipulate the

configuration of network devices. It is used to retrieve state data or manipulate configuration data of

network devices. It goes hand in hand with the YANG standard as already described above: YANG is

used to define the data model of state data (read-only) and configuration data (read-write), which is

encoded into XML documents to be transported through NETCONF. To this end, NETCONF also defines

the operations to make requests to network elements. In terms of the centralized network control

paradigm, NETCONF can be considered a southbound protocol between the centralized network

controller (CNC in TSN) and bridges to let the network controller control the operation of bridges. In

our context, the manipulation of the schedule (gate control list) of TSN bridges supporting scheduled

traffic according to IEEE 802.1Qbv [IEEE15-8021Qbv] and retrieving the port-to-port delay of bridges

are two important examples of bridge data to be configured or retrieved, respectively.

Figure 2 shows the NETCONF protocol layers as defined in RFC 6241 [IETF11-RFC6241]. The NETCONF

client (client for short) connects to the NETCONF server (server for short) via the reliable Transport

Control Protocol (TCP). The server shares its configuration data. In our context, the TSN bridge acts as

server. Confidentiality, authenticity, and integrity of messages sent between client and server are

ensured using, for instance, Transport Layer Security (TLS) [IETF99-RFC2246, IETF11-RFC6101] or the

Secure Shell protocol (SSH) [IETF06-RFC4253] running over TCP. NETCONF uses Remote Procedure

Calls (RPC), also encoded into XML, for retrieving and editing configuration data by invoking operations

on the server side. For instance, the edit-config operation is used to change configuration data

of the server. Besides request/response communication, NETCONF also supports event-based

communication by sending notifications from the server to the client. Such event-based

communication will show to be useful later in the context of adaptation, to report dynamic network

state information from the wireless TSN bridge (6GDetCom node) to the CNC for triggering schedule

adaptation.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 18

 Layer Example

 +-------------+ +-----------------+ +----------------+

 | Content | | Configuration | | Notification |

 | | | data | | data |

 +-------------+ +-----------------+ +----------------+

 | | |

 +-------------+ +-----------------+ |

 | Operations | | <edit-config> | |

 | | | | |

 +-------------+ +-----------------+ |

 | | |

 +-------------+ +-----------------+ +----------------+

 | Messages | | <rpc>, | | <notification> |

 | | | <rpc-reply> | | |

 +-------------+ +-----------------+ +----------------+

 | | |

 +-------------+ +---+

 | Secure | | SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ... |

 | Transport | | |

 +-------------+ +---+

Figure 2: NETCONF Protocol Layers [IETF11-RFC6241]

As soon as the connection between client and server are established, client and server exchange so-

called hello messages to announce their supported NETCONF version, capabilities (operations

beyond the base NETCONF operations), and supported YANG data models. This step is important since

NETCONF is an extensible protocol, i.e., different client and server implementations might support

different operations and different YANG data models. For instance, a TSN bridge that supports the

IEEE 802.1Qbv standard implements a YANG data model to configure the gate control list, whereas a

non-TSN bridge would not.

NETCONF defines the concept of configuration data stores to hold configuration data that is required

for the managed device for its operation. All devices must support a so-called running configuration

data store containing the currently operational configuration but might support further configuration

data stores. For instance, a candidate data store is often supported to first make changes to the

candidate data store without affecting the running configuration, before committing the candidate

configuration to the running configuration by invoking the commit operation. The candidate

configuration can also be locked using the lock operation (followed later by an unlock operation),

which can be useful to avoid inconsistencies when multiple sessions from different clients make

changes concurrently to the data store – in general, a single edit-config operation is atomic, but

with locking and unlocking, multiple edit-config operations can be isolated from other sets of

concurrent edit-config operations. NETCONF even specifies a so-called confirmed-commit

operation, which can be useful when updating several managed devices. A confirmed-commit

first copies the candidate configuration to the running configuration, but rolls-back the changes if no

commit operation follows within a timeout interval.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 19

Every NETCONF device must support a set of base operations, from which we mention a few next to

retrieve and change data. First of all, the get and get-config operations are used to retrieve data

from the server. The difference is that get can be used to retrieve state and configuration data,

whereas get-config only retrieves configuration data. Also a filter can be added, for instance, to

only retrieve a sub-tree of the data tree as specified by the YANG data model.

Configuration data can be changed with the edit-config operation to change parts of the data

tree stored in a given configuration data store. The already introduced operations commit, lock,

and unlock are used to commit changes to the running configuration, and protect the edited data

store from concurrent editing, respectively.

With these operations, we can already retrieve data from a data store and also change data using the

request/response type of communication, where the client sends requests (operations via RPC calls)

to the server, and the server responds. However, if data is dynamic, such a request/response

communication is cumbersome and not very efficient since new data has to be polled by repeated

requests to the server. In such a situation, event-based communication is an alternative type of

communication, where the server sends notifications to the client instead of waiting for requests from

the client. NETCONF also supports event-based communication sending such notifications as shown

in Figure 2.

There are several RFCs related to notifications in NETCONF. In the following, we refer to concepts

described in RFC 8639 [IETF19-RFC8639], which describes how to subscribe to and receive

notifications; RFC 8641 [IETF19-RFC8641], which build on RFC 8639 and describes how to subscribe to

updates from a YANG data store (YANG Push); RFC 8641 [IETF19-RFC8641], which in turn builds on the

other two RFCs, and describes dynamic subscriptions to YANG events and data stores over NETCONF.

To subscribe to notifications, two types of subscriptions can be distinguished: dynamic subscriptions

and configured subscriptions [IETF19-RFC8639]. For dynamic subscriptions, the subscriber subscribes

to notifications using NETCONF RPCs. If the (SSH/TCP) session is terminated, subscriptions established

in this session are also automatically terminated. In more detail, the following RPC operations are used

to manage dynamic subscriptions, whose meaning is clear from their names: establish-

subscription, modify-subscription, delete-subscription, kill-

subscription. Dynamic subscriptions are a mandatory feature. In contrast, configured

subscriptions are an optional feature. Such subscriptions are set up by modifying the configuration of

the publisher. They persist across sessions and reboots, as long as the configuration persists.

Notifications can also be sent to multiple subscribers.

Further, according to YANG Push, we can distinguish between periodic subscriptions and

on-change subscriptions. Periodic subscriptions send notifications periodically according to

some given time interval. Compared to periodically polling information from the data store, they save

the request since data is automatically pushed to the subscriber periodically. On-change-subscriptions

push updated to the subscriber only when values have actually changed.

Subscriptions also need to define, which parts of a data store are subject to subscriptions to only

receive notifications about relevant updates. YANG Push defines two different types of selection

filters: sub-tree selection filters and XPath selection filters. A sub-tree filter selects a sub-tree of the

data store similar to what can be done with sub-tree filters for get operations as introduced above.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 20

XPath filters use the XPath query language from XML [W3C99-XPath], which defines more powerful

concepts to select nodes in an XML tree such as predicates (e.g. sub-string matching), parent-child

relationships, etc.

2.1.3 Related Existing YANG Data Models
One goal of this report is to define new YANG data models to model the information required from

TSN bridges (in particular, wireless bridges/6GDetCom nodes) to calculate robust end-to-end

schedules for time-triggered scheduling (IEEE 802.1Qbv) and to adapt end-to-end schedules to

dynamic situations. As we see later in detail, the essential information is the characteristic port-to-

port delay of wireless bridges. The standard IEEE 802.1Qcc [IEEE18-8021Qcc] already defines the so-

called bridge delay, which we introduce next as related work to discuss the differences to our model

presented below and motivate the need for a new model.

IEEE Std 802.1Qcc defines bridge delay as the delay that packets experience when passing through the

bridge. Individual delays can be defined per (port-pair, traffic class) tuple, where traffic class is a value

from 0 to 7 as can be derived from the 3-bit Priority Code Point (PCP) of a VLAN tagged Ethernet frame.

The bridge delay explicitly excludes the delay for transmission selection. That is, delay is defined as if

queues were empty, the traffic class is permitted to transmit, and the egress port is idle. In other

words, queuing delay, which is controlled by scheduling (e.g., the gating mechanism in IEEE 802.1Qbv),

is excluded from the bridge delay. These definitions and assumptions are all consistent with our

assumptions. In Section 2.3, we also define our so-called port-to-port delay per port-pair and traffic

class and explicitly exclude queuing delay since the port-to-port delay should serve as input parameter

to calculate robust and adaptive IEEE 802.1Qbv schedules, which essentially controls the queuing

delay.

The standard also specifies that delays are defined as worst-case ranges between a minimum delay

value to a maximum delay value. That is, delay is deterministically bounded. As becomes clear later,

we will extend this notion of deterministic worst-case delay by allowing for the definition of stochastic

delay distributions (histograms) to model the characteristic port-to-port delay of wireless bridges.

Moreover, the standard states explicitly that these values (ranges) are not measured, although delays

could differ for different configurations of a bridge. Then the delay for the current configuration of the

bridge is provided. This is another major difference to our assumptions. We assume that the delay

distribution is dynamic and values might change over time significantly. To determine the current

delay – or, if delay prediction is used, the future delay – of a wireless bridge, our port-to-port delay is

measured and observed online or predicted using data-driven prediction algorithms based on

observed data.

The standard further distinguishes between independent delay and dependent delay. Independent

delay is defined as independent of frame length, whereas dependent delay is dependent on frame

length. Min/max. values are provided for both, dependent and independent delay. We realize that, in

our system, delay may depend on more than just frame length (and traffic class). Therefore, we extend

the notion of dependent delay by introducing a generic concept to define dependencies for port-to-

port delay. For each dependency, we can report an individual port-to-port delay distribution

(histogram).

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 21

In summary, our extended models for port-to-port delay embrace the given notion of bridge delay

and extend it in different ways to allows for a fine-grained definition of dynamic, stochastic, and

dependent port-to-port delay.

2.2 System Model
In this section, we present our system model including the system components and our assumptions,

which are the basis for dynamic adaptations. Our system model is shown in Figure 3. We consider

networks where wired IEEE 802 TSN bridges coexist with wireless TSN bridges called 6GDetCom nodes.

This system model follows the fully centralized model of IEEE 802.1Q with a (logically) centralized

network controller (CNC) in the network control plane controlling the TSN bridges implementing the

network data plane, based on a global view onto the network. Bridges expose their state and

configuration information to the CNC via the standard NETCONF protocol, and the CNC uses NETCONF

to change the configuration of bridges. YANG data models are used to describe the state and

configuration information of bridges. As detailed in the next section, we can utilize NETCONF

request/response and pub/sub (YANG Push) mechanisms to update the global view onto the dynamic

network state and trigger adaptation of end-to-end schedules.

Figure 3: Overview of the system components and their interaction with our end-to-end scheduler design

In particular, we assume that bridges provide information about the port-to-port delay between

ingress and egress ports to the CNC. The port-to-port delay can either be defined by static worst-case

bounds through standard models as defined in [IEEE18-8021Qcc]. In particular, wired bridges or in

general bridges whose port-to-port delay has very low variability over time and tight deterministic

bounds can use existing standard YANG data models to this end. However, we also consider bridges

where (a) the port-to-port delay has large variation following a stochastic distribution, or (b) the

stochastic delay distribution is non-stationary with non-constant (dynamic) parameters, where PD

measurements and predictions are only valid for a limited time span. Typically, this applies to wireless

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 22

bridges due to their characteristic PD. We will later present a YANG data model to describe such

stochastic port-to-port delay and NETCONF-based mechanisms to update information of the dynamic

delay distributions at the CNC in Section 2.3 and Section 2.5, respectively.

Figure 4 shows more details about the inner structure of a 6GDetCom node with three interfaces in

this example. Between the ports of a 6GDetCom node, we have a wireless link between UE and gNB

in the 5G system. This leads to a stochastic port-to-port packet delay between the ports of the

6GDetCom node. This port-to-port delay is modelled as histograms as described above for our YANG

data model. The port-to-port delay and all other state and configuration data can be accessed through

YANG data models via the NETCONF protocol as also already described above. In Section 3, we present

algorithms for planning and adapting end-to-end schedules to these dynamic PD distributions.

Figure 4: System model of a 6GDetCom Node

Beyond information about the individual dynamic PD distributions of bridges, other context

information might be relevant for dynamic adaptation, in particular, to trigger proactive adaptation

based on predictions. For instance, information about the mobility of stations can be utilized to predict

handovers between 6GDetCom nodes. Also, PD prediction mechanisms might benefit from global

information about the network state and environment, e.g. path and speed of stations, number of

stations in an area, physical obstacles, etc. As a generic concept to represent all such context

information relevant for prediction and sub-sequent dynamic adaptation, we introduce digital twins

(DT) in our model. By connecting DTs to the CNC, we can capture the context information in the control

plane.

In this work, we only consider time-triggered scheduling for scheduled traffic according to IEEE

802.1Qbv [IEEE15-8021Qbv]. To this end, each bridge including 6GDetCom nodes implement the

standard transmission gating mechanism, where each egress queue is controlled by a gate. These

gates open and close according to a schedule implemented as a timetable, also called Gate Control

List (GCL). That is, the GCL defines when which gates are open and closed, and when packets are

eligible for transmission. By separating and directing traffic (i.e. TSN streams) to an appropriate egress

queue, according to the application requirements for the TSN stream, and then controlling the gates

for those queues, the CNC can control the bridge delay range perceived for this bridge for the different

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 23

TSN streams3 including the queuing delay of packets waiting for transmission. The scheduler

component is responsible for calculating the GCL. We also assume the Per-Stream Filtering and

Policing (PSFP) mechanism defined in IEEE 802.1Qci [IEEE17-8021Qci] is used. In more detail, we

assume that so-called stream gates are applied before the egress queues to filter out packets arriving

outside anticipated time intervals to isolate streams from each other and protect from too late or

early packets of other streams. It will be the major task of the scheduling mechanisms presented later

to calculate and adapt (re-calculate) the schedules for GCLs and stream gate configurations.

To implement proactive adaptation schemes based on predictions for 6GDetCom nodes, we assume

a prediction service that exposes one or more prediction states to the scheduler. Given a predicted

state, the scheduler can query the predicted PD distribution for this state or get notified (i.e., pushed)

PD distributions for certain states and then starts pre-calculating schedules with a certain lead time

depending on the prediction time horizon. Note that schedule calculation is a complex computational

task, and having a lead time to calculate schedules drastically increases the chance to have a schedule

ready in time, i.e., before the state has actually changed. Depending on the implementation of the

prediction service, it may only expose PD predictions based on the current state. A more sophisticated

prediction service may also provide a set of the “most likely” future states. This way, the scheduler

can proactively start its computation for each provided prediction state.

The Centralized User Configuration (CUC) is used for the interaction between end stations and the

CNC. To interact with the application layer, we consider a similar system model as [IEC/IEEE24-60802].

That is, each application specifies data objects that capture the required data exchange between

different end devices, along with their reliability and punctuality requirements. The application

requirements are forwarded and accumulated by a management middleware, allowing for a global

view of the message streams at the CNC. During runtime, the management middleware can notify the

scheduler of dynamically changing stream sets, where streams may join or leave the system. From an

end-to-end scheduling perspective this means that already configured schedules (GCLs) at bridges

need to be re-configured with new schedules including added streams and excluding removed

streams. Or in other words: end-to-end scheduling needs to adapt to information about streams that

was not available a priori, thus, a static schedule would not suffice in general.

After the scheduler computed an eligible TSN configuration after a significant change of the state

requiring new schedules, it notifies the management middleware with the corresponding stream

objects. In a subsequent step, these stream objects are used to configure the bridges and the

applications by configuring GCLs of bridges and, in case of isochronous traffic with applications

synchronized to network time, the schedule of applications for transmitting packets.

An important assumption with respect to station mobility is that mobility will be handled transparently

and locally within the 5G/6G system in the 6GDetCom node, i.e., end-to-end paths do not change

when UEs are handed over between base stations (gNB). From a (wireless) TSN bridge perspective,

the ports do not change, when the UE moves, neither is the mobile station handed over to another

bridge (6GDetCom node). The only effect that possibly becomes visible during a handover is a sudden

change of the PD distribution, i.e., the port-to-port delay of the 6GDetCom node. Or in other words:

mobility is just another cause for stochastic and dynamic PD distributions, which we anyway already

3 By applying scheduling for traffic across all bridges of the network accordingly in a coordinated way, the end-
to-end latency (minimum and maximum) can be ensured by configuring an appropriate end-to-end schedule.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 24

assume even if stations were completely stationary. Therefore, we do not present approaches for end-

to-end scheduling dedicated to mobility but handle it as part of scheduling for stochastic and dynamic

PD distributions.

In the following, we first present the YANG data models of 6GDetCom nodes for providing the data

required for adapting end-to-end schedules to the scheduler. Afterwards, we describe in more detail

the interaction between scheduler and bridges and between scheduler and applications, which is

required for adaptation.

2.3 YANG Data Models for Packet Delay
To plan and adapt schedules to dynamic packet delay induced by 6GDetCom nodes, we must be able

to model the characteristic port-to-port delay of such wireless bridges first. Then the algorithms for

calculating wireless-friendly schedules can use this information as described in the next section to

calculate robust schedules and adapt schedules to dynamic port-to-port delay.

To model port-to-port delay, we define a new YANG data model with the following main features:

• Fine-grained modelling of stochastic delay distributions. The granularity of the model can be

adjusted and is sufficiently flexible to define probabilistic bounds (probability of delay values

within a delay interval) as well as the classic worst-case deterministic bounds (min-max

interval with 100 % probability) from IEEE Std 802.1Qcc [IEEE18-8021Qcc].

• Independent and dependent delay distributions: Delay can be defined as independent, i.e.,

applying to all possible states. We also support a generic notion of dependent delays that are

only applicable in certain states. The actual definition of “states” is deliberately kept generic

such that PD distributions could depend on any relevant state. For instance, we could define

different PD distributions for different frame sizes (frame length dependency), different

physical speeds of end stations (mobility dependency), etc. Important for our algorithms for

proactive schedule adaptation is mainly that we could calculate schedules for different

possible future states proactively, and then switch to the corresponding schedule when the

state occurs.

• Validity period: Dynamic packet delay information might only be valid in a certain time frame.

Therefore, we add the capability to optionally specify a period of validity.

Here, we only present excerpts from our YANG data model to explain the essential concepts. The full

YANG data model can be found in the Appendix of this report in Section 5.1 and in the public project

Github4

Consistent with IEEE Std 802.1Qcc [IEEE18-8021Qcc], we model port-to-port delay per port-pair/traffic

class. Queuing delay (at the egress port) is explicitly excluded from the modelled port-to-port delay.

This is also consistent with IEEE Std 802.1Qcc, which defines that bridge delay (as defined by this

standard) is provided with zero delay for transmission selection at the egress port. Queuing delay (at

the egress port) is controlled by scheduling, for instance, opening and closing gates according to a

gate-control list. In contrast, the port-to-port delay modelled here is beyond the control of TSN

scheduling. Therefore, the port-to-port delay is provided as if gates were open. The port-to-port delay

4 https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/

https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 25

depends on the bridge characteristics for transferring packets from the ingress port to the egress port.

In a 6GDetCom node this includes the 6G wireless transmission (see e.g. [DET23-D21]).

The basic idea to flexibly model port-to-port delay is to use histograms as shown in Listing 1 in the

histogram grouping of the YANG data module. The histogram consists of a number of bins as

defined by bin-count. Bins can have different widths. If the first bin does not start at delay value

zero, then the node start can be used to define the start of the first bin. The interval before this

start value have probability zero. The node count defines the number of values within a bin. Note

that count can also be translated to a relative frequency very easily if count is interpreted as

numerator and the sum of all counts as denominator of the relative frequency. Histograms with bins

and counters are also used for performance measurements for 5G network functions [3GPP24-28552],

in particular, for delay measurements. If PD delay distributions are available already as continues

probability density functions, for instance, as a result of delay predictions rather than measurements,

they could be discretized to provide a histogram. The node tail can be used optionally to define

how many values are in the tail of the distribution after the last given bin, which effectively defines a

final bin reaching to infinity (unbounded delay distribution).

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 26

grouping delay-histogram {

 description

 "Delay histogram";

 leaf start {

 type uint64;

 description

 "The start value of the first bin in nano-seconds.

 If not specified, the first bin starts at 0.";

 }

 leaf bin-count {

 type uint32;

 mandatory true;

 description "Number of bins.";

 }

 list bin {

 description "Bins of histogram.";

 key index;

 leaf index {

 type uint32;

 mandatory true;

 description "The index of this bin.";

 }

 leaf width {

 type uint64;

 mandatory true;

 description

 "The width of this bin in nano-seconds.";

 }

 leaf count {

 type uint32;

 mandatory true;

 description "Count of values in this bin.";

 }

 }

 leaf tail {

 type uint32;

 description

 "Count of values in the tail of the histogram

 after the upper bound of last bin until infinity.

 Can be used to define an unbounded distribution.";

 }

}

Listing 1: YANG data model – histogram

This definition of histograms shows to be quite flexible when modelling port-to-port delay as

demonstrated next. First, we can model the classic deterministic definition of delay as specified in

IEEE Std 802.1Qcc [IEEE18-8021Qcc] as worst-case min/max bounds as shown in Listing 2 with a single

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 27

bin, assuming a minimum delay bound of 1 ms and maximum delay bound of 10 ms in this example.

The count value can be set to any value greater than zero here since the total count of all bins summed

up corresponds to 100 % probability in a histogram.

<bin-count>1</bin-count>

<!-- first bin starts at 1 ms -->

<start>1000000</start>

<bin>

 <index>0</index>

 <!-- 10 ms bin width-->

 <width>10000000</width>

 <count>1</count>

</bin>

Listing 2: Deterministic delay bounds

A histogram with more bins is shown in Figure 5. This histogram is bounded on the right hand-side,

i.e., 100 % of the values fall into the given bins. By adding a tail node, we could extend this

distribution ad infinitum, i.e., less than 100 % of values are in the interval from zero up to the upper

bound of the last specified bin, and the tail contains the rest of the values (unbounded distribution).

Figure 5: Histograms for bounded (left) and unbounded (right) packet delays

Next, we assign one or several histograms to a (ingress-port, egress-port, traffic-class, index) tuple as

shown in Listing 3 by augmenting the standard bridge component node from the YANG module dot1q-

bridge.yang [IEC/IEEE24-60802]. This is also consistent with IEC/IEEE 60802, where dependent and

independent delays are added below the bridge component node. The node port-to-port-

delays contains a list of port-to-port-delay nodes indexed by the combined key (ingress-

port, egress-port, traffic-class, index), which are all based on standard IEEE types. For instance, the

traffic class is a number from 0 to 7, corresponding to the Priority Code Point (PCP) header field in the

VLAN tag. Each port-to-port-delay node defines a histogram by using the delay-

histogram grouping presented above. Using the index node, we can assign multiple histograms

per ingress-port, egress-port, traffic-class.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 28

augment "/dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component" {

 container port-to-port-delays {

 config false;

 list port-to-port-delay {

 key "ingress-port egress-port traffic-class index";

 leaf ingress-port {

 type dot1qtypes:port-number-type;

 config false;

 mandatory true;

 description "Unique number of ingress port.";

 }

 leaf egress-port {

 type dot1qtypes:port-number-type;

 config false;

 mandatory true;

 description "Unique number of egress port.";

 }

 leaf traffic-class {

 type dot1qtypes:traffic-class-type;

 config false;

 mandatory true;

 description "Traffic class (0..7)";

 }

 leaf index {

 type uint16;

 config false;

 mandatory true;

 description

 "Index to define multiple histograms per port-pair

 and traffic class.";

 }

 uses delay-histogram;

 }

 container validity-period {

 container valid-from {

 description

 "Given delays are only valid at or after this

 point in time, specified as PTP timestamp.";

 uses ieee802:ptp-time-grouping;

 }

 container valid-until {

 description

 "Given delays are only valid until this

 point in time, specified as PTP timestamp.";

 uses ieee802:ptp-time-grouping;

 }

 }

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 29

 leaf dependency-class {

 type enumeration {

 enum "independent";

 enum "dependent";

 }

 description

 "Are the given delays only applicable under certain

 conditions (e.g., for frames of certain length)?";

 }

}

Listing 3: Histograms assigned to (ingress-port, egress-port, traffic-class)

Multiple histograms can be specified per port-pair/traffic-class to define independent and possibly

multiple dependent port-to-port delay distributions as indicated by the node dependency-class.

For instance, we can define an independent delay distribution and a frame-length-dependent delay

distribution for the same port-pair/traffic-class combination. Beyond length dependencies, our YANG

data model is generic and extensible to define arbitrary further dependencies in the future by defining

custom dependencies as shown in Listing 4. Thus, depending on the state, individual delay

distributions can be defined and communicated to the CNC to calculated state-dependent schedules.

In particular, this facilitates proactive adaptation schemes by proactively calculating schedules for

different (possible) future states and then use the schedule which matches the actual state.

augment "/dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component/port-to-port-delays" {

 when "dependency-class = 'dependent'";

 container dependencies {

 container length-dependency {

 leaf min-frame-length {

 type uint32;

 description

 "Values apply only to frames equal or greater

 than this value.";

 }

 leaf max-frame-length {

 type uint32;

 description

 "Values apply only to frames equal or smaller

 than this value.";

 }

 }

 }

}

Listing 4: Extensible dependency model

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 30

Finally, the node validity-period defines the time frame in which the given distribution is valid.

Such a validity period is especially useful for dynamic systems where the delay distribution is expected

to change (instead of the static distributions as defined currently in the IEEE standard). This facilitates

querying new distributions latest when the old distributions become invalid to adapt the schedule or

also in advance. If latency prediction concepts are used, one could even define a validity period

starting in the future. For instance, if a mobile device is predicted to move around a corner in 5 s from

the time of querying the delay distribution, the distribution could be marked as valid only in 5 s, when

the delay distributions is expected to change.

In summary, our YANG data model defines the schema shown as schema tree in Listing 5.

module: port-to-port-delay

 augment /dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component:

 +--ro port-to-port-delays

 +--ro port-to-port-delay*

 | [ingress-port egress-port traffic-class index]

 | +--ro ingress-port dot1qtypes:port-number-type

 | +--ro egress-port dot1qtypes:port-number-type

 | +--ro traffic-class dot1qtypes:traffic-class-type

 | +--ro index uint16

 | +--ro start? uint64

 | +--ro bin-count uint32

 | +--ro bin* [index]

 | | +--ro index uint32

 | | +--ro width uint64

 | | +--ro count uint32

 | +--ro tail? uint32

 +--ro dependency-class? Enumeration

 +--ro validity-period

 | +--ro valid-from

 | | +--ro seconds? uint64

 | | +--ro nanoseconds? uint32

 | +--ro valid-until

 | +--ro seconds? uint64

 | +--ro nanoseconds? uint32

 +--ro dependencies

 +--ro length-dependency

 +--ro min-frame-length? uint32

 +--ro max-frame-length? uint32

Listing 5: Schema tree of port-to-port delay YANG data model

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 31

2.4 Interaction between Scheduler and Application
In conventional settings, a scheduler has to be able to adapt TSN configurations to joining and leaving

streams, i.e., adapt the schedule to dynamic stream sets. Moreover, the specific properties of our

wireless system including, in particular, dynamic PD distributions might mandate further interaction

between scheduler and application to deal with degrading system performance. In the following, we

discuss coordination steps between scheduler and applications.

2.4.1 Incremental Scheduling
While the schedule can easily be adapted for leaving streams, joining streams may affect the ones that

are already scheduled. As a consequence, a TSN scheduler middleware must perform an acceptance

test to ensure that no reliability or punctuality guarantee is impaired by admitting additional streams.

From the perspective of the TSN scheduler, the converged architecture of wireless and wireline

communication offers novel possibilities for realizing such acceptance tests. On the more traditional

side, joining streams can be accepted unconditionally; that is, by accepting a joining stream, the

scheduler guarantees the application that its stream requirements are met under any circumstance

with respect to the specified reliability. In comparison, a holistic design may conditionally accept

joining streams, where the scheduler only provides reliability and punctuality guarantees for certain

network and environmental conditions.

To illustrate the impact of this design choice, we consider a simple realization of a conditional

acceptance test in the following: On accepting a joining stream 𝑓, the TSN scheduler guarantees that

it can meet 𝑓’s end-to-end latency guarantees with its required reliability as long as the TSN scheduler

can guarantee the same for all streams with higher priorities. As a consequence, the scheduling

middleware reserves the right to drop 𝑓 at a later point in time, e.g., if

• another joining stream with higher priority requires additional resources, or if

• the wireless channel quality degrades to a point where the schedule has to perform triage.

2.4.2 Reaction to Degrading Application Performance
Whereas dropping 𝑓 in the above cases can be quite drastic, an acceptance test may also specify a

graceful degradation of 𝑓’s punctuality guarantees. Depending on the application, QoS degradations

often appear more acceptable than arriving at a complete system halt. The following provides

examples of possible tradeoffs that our scheduler design can offer to the application layer.

On the one extreme, our scheduler can aim to uphold the streams’ reliability guarantees at the cost

of introducing additional tardiness. For instance, when the scheduler can no longer guarantee that the

stream 𝑓 is delivered within 10 𝑚𝑠 and a reliability of 99.99 %, it may prolong 𝑓’s acceptable end-to-

end latency to 15 𝑚𝑠 (assuming that this latency can be provided by 99.99 %). On the other extreme,

our scheduler can enforce the streams’ punctuality requirements at the cost of impairing their

reliability guarantees. For instance, 𝑓’s end-to-end latency stays at 10 𝑚𝑠 but its reliability degrades

to below 99 %. As both extremes can result in unbalanced QoS guarantees, a hybrid combination is

expected to result in better tradeoffs.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 32

2.5 Interaction in Control Plane to Adapt to Dynamic Packet Delay
Next, we consider the adaptation of end-to-end schedules to dynamic PD distributions, i.e., a change

of the stochastic properties such as a shifted mean delay or changing PDV. This involves three major

steps:

1. Retrieving information about the (dynamic) PD distribution from the bridges or from the

prediction service by the scheduler through the CNC.

2. Calculating a new end-to-end schedule (GCLs for each bridge) by the scheduler.

3. Pushing the new configuration (GCLs) to the bridges.

For Step 1 and Step 3, we describe how to use standard NETCONF mechanisms and also discuss the

implications for the scheduler. The YANG data models for describing PD communicated in Step 1 over

NETCONF have already been presented in Section 2.3.

Step 2 is the algorithmic part of adaptation, which is covered in detail in Section 3.

We distinguish between two major approaches:

• Reactive adaptation (“break-before-make”): The scheduler calculates (“makes”) a new

schedule only after it is informed that the PD has actually changed. Since schedule calculation

takes significant time, this means that the old schedule stays effective until a new schedule

has been calculated, although the old schedule has not been calculated for the current

situation (PD distribution). Consequently, until the new schedule is available, given guarantees

(latency bounds and deadlines) might be violated (“break”). This problem is critical since

schedule calculation is a complex computational task, and therefore, the transition period

might be relatively long (several seconds at least even with optimized algorithms for

calculating schedules).

• Proactive adaptation (“make-before-break”): To tackle the obvious problem of reactive

adaptation, proactive adaptation follows a “make-before-break” approach where schedules

are calculated ahead of the time when they are actually needed and become effective. This

obviously requires some PD prediction mechanisms to define when and how PD distributions

change significantly in their characteristics like mean, variance, etc., which is a complex task

on its own out of the scope of this report. PD prediction is considered in the DETERMINISTIC6G

project [MNS+23] and it is subject to future work how to further enhance the prediction of PD

for future states. In this report, we only provide an overview of PD prediction and focus on

the implications for scheduling.

We start by presenting the mechanisms for reactive schedule adaptation, before we consider

proactive schedule adaptation.

2.5.1 Reactive Schedule Adaptation

Periodic Polling

The straightforward approach to implement reactive adaptation is periodic polling of all bridges that

are providing dynamic port-to-port delay information for the current distribution of the port-to-port

delay (histogram as defined in Section 2.3). Bridges providing only static information on port-to-port

delay such as static worst-case bounds obviously only need to be polled once since these values are

never updated. Whether a bridge can provide dynamic port-to-port delay information would be

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 33

advertised through capabilities in NETCONF, so the CNC can selectively poll bridges periodically that

provide dynamic information.

Figure 6 shows a periodic polling sequence with a given polling interval (we only show the sequence

of actions here only for one bridge, but the same actions would be executed for each bridge providing

dynamic information). With NETCONF and YANG, this can be implemented by calling the get

operation on the port-to-port-delays node in the YANG data model defined above. After

calculating the schedule, the bridges can be configured using the edit-config operation followed

by a commit operation to configure the new gate parameters at the bridge including the so-called

admin-control-list, which is the new configured GCL. The new admin control list becomes

operational at the start of the next cycle (admin-base-time + n*admin-cycle-time for the

smallest integer n such that the time is in the future).

Figure 6: Sequence diagram – Periodic polling of PD and updating of bridges

There are several problems and difficulties with this approach. The first problem is the time, say tcalc,

that it takes to calculate the schedule, which is typically much longer than the rest of the interaction

and can easily be several seconds even with fast heuristics to calculate schedules (see Section 3). If a

new schedule is required – i.e., if the PD distribution changes significantly and polling starts

immediately when the PD distribution changes –, then it will take at least tcalc to install a new schedule,

i.e., the schedule is at least broken for period tcalc in this case – we call this the broken period in the

following.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 34

However, this is not even the worst case (longest duration) of the broken period. An old schedule

might already become outdated without being noticed by the CNC before a new delay distribution is

polled, i.e., during the current polling period before the next poll request, which further prolongs the

broken period. In fact, the last polled PD distribution might already become outdated immediately

after it is polled, and the new schedule is already broken, when it is installed. Then it takes another

full polling period plus tcalc before a new schedule will be installed. And then the same situation might

repeat again, and schedule adaptation lags behind forever with only broken schedules installed in the

worst case.

Clearly, if PD distributions can change any time, and tcalc is greater than zero, no update scheme can

ever guarantee a lower bound on the broken period. However, polling introduces an artificial “dead

time” equal to the polling interval plus tcalc before it can effectively react. So, one question is: Can we

improve on the lower bounds of the broken period with another scheme? We will come back to this

question later after having completely discussed the polling scheme.

Other problems of the polling scheme are the selection of polling period and the induced overhead,

which we discuss together next. Obviously, a long polling period leads to long broken time bounds but

low communication overhead and load onto bridges, which need to process and respond to poll

requests. A short polling interval leads to faster reaction times and high communication and

processing overhead. A reasonable lower bound for the polling period would be the time to calculate

a new schedule since it is not efficient to query for new delay values as long as the old values have not

been processed into a new schedule. Using YANG Push, we can use periodic subscription as introduced

above to let bridges report their current port-to-port delay periodically. If notifications from all bridges

have been received (one round of updates is finished), the scheduler can be invoked. This saves the

periodic get-requests from Figure 6; the response message become notifications as shown in Figure

7. Besides this difference, the fundamental problems remain: How to reduce the influence of the

polling period onto the broken period? How to choose the notification interval? These questions

directly lead to an event-based communication approach, not based on periodic polling or periodic

notifications, but based on actual changes of delay distributions, i.e., based on the delay

characteristics, as discussed next.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 35

Figure 7: Sequence diagram – Periodic subscriptions for reporting dynamic PD distributions and scheduling.
For the sake of simplicity, the calls to establish subscriptions (operation establish-subscription) have

been left out

Event Notifications

To eliminate the dead time caused by the polling period of the polling approach above, we now

consider an event-based approach based on value changes (on-change subscriptions in YANG Push)

rather than periodic updates. Whenever the port-to-port delay changes significantly, the scheduler is

notified via the CNC as fast as possible. Figure 8 shows the sequence of actions of this approach.

Although it looks similar to the periodic subscriptions above, the major difference is the missing

notification period, which is replaced by a check for delay value changes at the bridge.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 36

Figure 8: Sequence diagram – Event-based updates of PD and schedule adaptation.
For the sake of simplicity, the calls to establish subscriptions (operation establish-subscription) have

been left out

The upper bound of the broken time (time to react to a significant change of PD requiring a new

schedule), is now dominated by the time tcalc required to calculate a new schedule, plus a minor delay

to trigger and communicate the updated port-to-port delay to the CNC and push new schedules to the

bridges.

Since polling is not used anymore, also the problem of defining a suitable polling interval is solved.

Instead, a new problem arises: Which delay value updates should be provided to the CNC? This

question is directly related to the question, when is a change of PD significant to require a new

schedule? A naive answer to the first question could be to simply send all changes to the CNC (send

all updates, let the CNC sort it out). On the one hand, this does potentially induce big overhead, which

could be saved by using YANG Push features. As mentioned above, XPath selection filters can be used

on subscriptions to define filters on the YANG data model. XPath includes the possibility to define

predicates on values, such as value > some other value. This would allow for what is also known in

Publish/Subscribe as content-based filtering that the scheduler uses to specify thresholds on value

changes that are considered significant for scheduling, and suppress insignificant value updates.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 37

On the other hand, it does not answer the second question: Which updates are actually significant

such that a new schedule needs to be calculated? After all, the schedule calculation implies big

processing overhead, even if executed on a fast edge cloud server infrastructure hosting the CNC. To

answer this question, some knowledge of the robust scheduling algorithms is required, which can cope

with stochastic PD. These algorithms are described in Section 3 but in a nutshell, we can summarize

the requirements as follows: For the scheduler it is important to know the probability of the frame

transmissions completing within some time interval [dmin,dmax] allocated by the schedule for the

transmission. For adapting the schedule, e.g., by increasing or decreasing the size of allocated

intervals, it is important to know whether the schedule actually falls behind the desired reliability or

exceeds the desired reliability. Notifications towards the CNC and scheduler are only sent if the actual

reliability — i.e., the 5G reliability guarantee when keeping [dmin,dmax] — significantly differs from the

5Greliability required for upholding the streams’ guarantees end-to-end.

Content-based subscriptions (informing bridges which updates are relevant) also would give the

possibility for more sophisticated, hierarchical adaptation strategies. To meet reliability requirements,

one could either adapt the (radio) resources allocated to streams at the 6GDetCom node, i.e., solve

the problem by adapting the 5G system. Or one could adapt the resources allocated by the end-to-

end schedule (allocated time intervals) to solve the problem “end-to-end” on the TSN level. Informing

the 6GDetCom node of what changes are considered significant from the end-to-end scheduling

perspective allows the 6GDetCom node to make an informed decision whether it should solve the

problem locally in the 5G system, or escalating the problem to TSN network control to solve the

problem end-to-end. Obviously, such a hierarchical adaptation approach is challenging. Since this

report is focused on the adaptation of end-to-end schedules, we consider hierarchical adaptation to

be out of the scope of this report and part of future work. But we conclude that using content-based

subscriptions could reduce overhead by only reporting significant changes to the scheduler and

support hierarchical adaptation approaches by enabling the 6GDetCom node to make informed

decisions whether to adapt locally.

2.5.2 Proactive Schedule Adaptation
If we want to further reduce the lead time of scheduling below tcalc, we cannot rely on a reactive

scheduling approach that only starts calculating schedules when the PD has already changed. Instead,

we must calculate schedules proactively to ideally have them ready when the PD actually changes.

This is only possible if we employ PD prediction to predict the future packet delay and use these

predictions as input to calculate end-to-end schedules. If predictions are sufficiently accurate to

predict the PD distribution that will occur tcalc time units in the future, we could theoretically reduce

the broken time to zero by always having a correct schedule ready in time. So the duration tcalc to

calculate a new schedule is still critical here. If tcalc is long, then also the PD prediction must be able to

predict PD distributions for a long time in the future to fully compensate for the long calculation time.

A simple protocol is depicted in Figure 9. Note that we replaced bridges here by the prediction service

since the prediction algorithms typically require substantial resources, which we might not associate

with a classic TSN bridge but some service running, for instance, in an edge cloud infrastructure.

Moreover, the prediction service might not only consider local data of a bridge to make predictions

but could utilize all available global context information, including information from the network and

the environment (e.g. station mobility, obstacles, etc.).

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 38

We augment port-to-port delays provided as YANG data models by a validity period as defined above

in our YANG data model. In particular, the attribute valid-to specifies that the current port-to-port

delay distribution will expire at this point in time. Then the CNC can query for a new distribution tcalc

time units in advance and push the new schedule to the bridges before the expiration time. Bridges

will use the new schedule at this time or earlier, if prediction indicates that the new distribution is

already valid before the old schedule expires using the model attribute valid-from. TSN supports

to make the configured admin-control-list (new GCL) operational at the admin-base-

time if the admin-base-time is in the future, i.e., candidate configuration data store of bridges

can already be configured in advance and automatically make the new schedule operational.

Figure 9: Sequence diagram – Proactive adaptation of schedules

Such a predictive approach can be made more sophisticated depending on the capabilities of the

prediction mechanism. Although a detailed discussion of prediction mechanisms is out of the scope of

this report and discussed elsewhere in the DETERMINSTIC6G project in dedicated reports and

publications [MNS+23, MSG23], we provide here a short description of the prediction concepts and

then discuss implications for the adaptation of end-to-end scheduling.

Overview of Data-driven Prediction

The accurate prediction of PD characteristics is essential for achieving dependable time-critical

communications in 6G networks. With the evolution of various network and traffic conditions in

5G/6G systems, the ability to estimate the probability density function (PDF) of packet delay is

required, e.g., to calculate robust end-to-end schedules. Data-driven approaches, particularly those

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 39

leveraging ML techniques, have been proposed to obtain the relationship between packet delay and

various conditions based on real-world measurement data. Specifically, conditional density estimation

(CDE) of delay involves creating a mapping (ℎ𝜔) from the conditions 𝑋 (e.g., the network state) to the

parameters 𝜃 (e.g., mean, skewness, variance, long tail) of the density function, i.e., 𝜃 = ℎ𝜔(𝑋).

Deliverable D2.1 “6G Centric Enablers” [DET23-D21] provides a detailed description of the proposed

approaches to solve the CDE problem. In essence, the goal of such data-driven delay predictors is to

obtain a delay characterization in the form of a PDF given a specific network and traffic state.

Given the dynamic nature of 5G-Adv/6G systems concerning network and traffic, it is not sufficient to

produce delay predictions once and use that to calculate end-to-end schedules. The delay predictions

of 5G made at a certain time are expected to change over time as the system state evolves

stochastically. Therefore, it is useful to provide a quantitative measure of confidence in delay

predictions. Generally, this confidence should decrease with the forecast lead time, meaning the

further into the future the prediction, the lower the confidence in the estimated delay PDF. The

confidence level can be defined as the difference between the estimated delay PDF (ranging over a

few network conditions) and the marginal delay PDF (ranging over many/all network conditions)

[Del04]. Conversely, the "time of predictability limit" (𝐿𝑝𝑟𝑒𝑑) can be defined as the time when it is no

longer possible to distinguish between the estimated and marginal PDFs, indicating that predictability

diminishes. From an end-to-end scheduling perspective, on one hand, a larger 𝐿𝑝𝑟𝑒𝑑 implies a longer

duration over which the end-to-end schedule is expected to meet the delay-reliability requirement.

On the other hand, if 𝐿𝑝𝑟𝑒𝑑 is smaller, faster computation and adaptation of schedules are required.

Implications for predictive end-to-end scheduling

A reactive adaptation mechanism would solely consider the current packet delay PDF, e.g., as

approximated by its parameters 𝜃 = ℎ𝜔(𝑋). However, in case 𝐿𝑝𝑟𝑒𝑑 is relatively small, the end-to-

end scheduler may not be able to find eligible solutions within the required timespan. As a

consequence, the end-to-end scheduler may have to fall back to a (potentially more conservative)

precomputed TSN schedule.

Our end-to-end scheduler design supports proactive approaches by incorporating the following:

• Multiple port-to-port delay histograms can be specified with our YANG data models of Section

2.3. Each histogram can be associated with dependencies that capture the current network

condition 𝑋, defining under which circumstances the provided port-to-port delay is applicable.

The notion of network conditions is deliberately generic to be able to cover a broad range of

dependencies.

• By exposing a set of the most likely packet delay histograms, i.e., {(𝑋1, 𝜃1), … (𝑋𝑘 , 𝜃𝑘)}, our

end-to-end scheduler can proactively start finding eligible schedules 𝑆𝑖 for each network

condition 𝑋𝑖 . Hence, if the prediction service notifies our scheduler of changing network

conditions thereafter, we can immediately deploy the precomputed schedule 𝑆𝑖 without

additional overhead.

Further details on possible realizations of proactive end-to-end scheduler are provided in Section 3.4.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 40

2.6 Network Topology with Wireless By-Pass
Next, we focus on another systems aspect that impacts end-to-end scheduling: leveraging the wireless

network to by-pass a chain of wired links. Such a wireless by-pass has positive effects onto the complex

task of end-to-end scheduling since the simplified topology has fewer hops on end-to-end paths. A

simplification of the complex scheduling task is particularly beneficial if schedules need to be adapted

to dynamic changes such as applications and their streams joining of leaving the system. Thus, the

wireless by-pass also simplifies such adaptations and reduces the time to adapt, e.g., to calculate new

schedules.

We first introduce the architecture of the wireless by-pass before discussing its impact.

2.6.1 The Wireless By-pass
Figure 10 shows an example of a wired TSN network and its two main components: (1) the “End

station” component, defined in IEEE Std 802-2014 [IEEE14-802], and (2) the “Bridge” component, a

Customer Virtual Local Area Network (C-VLAN) component as defined in IEEE Std 802.1Q-2022

[IEEE22-8021Q].

Figure 10: TSN network components as per Figure 1 of IEEE/IEC 60802 D2.1 [IEC/IEEE24-60802]

Early deterministic wireless standardization has intended to build as much as possible on existing

functionalities/architectures, therefore the wireless system was modelled like a “virtual node” in the

network architecture (i.e., trying to emulate the operation and characteristics of a wired TSN bridge

or DetNet router). In such a modelling concept, the radio link of the 6GS becomes an internal entity

interconnecting the external ports of the “virtual node”, so the radio link is not directly visible from

outside. However, due to the fundamental characteristics of the multi-endpoint radio link, the

characteristics of such a “virtual node” is heavily affected. The latency of a mobile transmission link is

stochastic and heavy-tailed, i.e., larger delay values are more likely compared to exponentially

bounded tails, and packet delay variation is relatively large. Therefore, the virtual nodes behave like

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 41

having a stochastic backplane, and its properties may lead to extra challenges during designing the

end-to-end scheduling.

At the same time, using wireless technology in a Time-Sensitive Network has positive impacts on the

latency-related design as well. They are the result of the “wireless by-pass” effect, namely the number

of hops between Talker/Listener(s) are significantly reduced due to the wireless link. For example, in

usual wired industrial scenarios, the network architecture is based on daisy chaining several bridge

components resulting in several 10s of hops network diameter. The proper design of scheduling is

needed at each hop (e.g., calculation of GCL at bridges). A limited number of hops means a significant

simplification regarding the calculations of schedules in general. In particular, in dynamic systems

where schedules need to be adapted, e.g., due to dynamic stream sets (adding/removing streams

to/from the schedule), such a simplification is beneficial since it also reduces the time to adapt.

Depending on the use-case scenario, the simplification may end in an extreme scenario, where there

is only a single-hop between the endpoints (e.g., an actor is wireless connected, 6G network elements

(gNB, UPF) are implemented in the same local Cloud as the industrial controller of the actor.

The following aspects of “wireless by-pass” are investigated:

1. How can transport bottleneck(s) be eliminated?

2. How is inter-stream impact mitigated, such that one stream does not impair the guarantees

provided to another stream, e.g., with respect to per-stream delay bounds?

Depending on the actual network scenario the outcome can be extreme, i.e., a simplified TSN

architecture with minimal deterministic functions can be defined (e.g., a single TSN-specific service is

providing “sync for actors/controllers”, and latency bounds are achieved via simple prioritization and

over-dimensioning).

2.6.2 Combined Wireless & Wireline Architecture
The wireline (legacy) architecture has a quite simple partly-meshed topology, that contains ring(s) and

daisy-chain of nodes (cf. Figure 11). There are always multiple hops between an “Actor”/”Sensor” and

related “application controller(s) (Appl-Ctrl)”. The links between the network nodes have limited

bandwidth, therefore scheduling is needed at each hop (including the end station component) (see

Section 4 of deliverable D3.1 6G Convergence Enablers Towards Deterministic Communication

Standards [DET23-D31]).

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 42

Figure 11: Example of wireline (legacy) architecture

We see two major changes, which are motivated by new scenarios, that impact TSN-based systems

and their legacy architecture and lead to a new improved architecture as depicted in Figure 12:

1. Virtualizing and moving applications to Cloud.

2. Adding wireless communication technology.

The first change is moving application controllers to the Cloud, which allows to get rid of specific

hardware components and provides flexible compute capacity for them. Using commodity hardware

and gaining from Cloud technologies are a big driving force due to possible cost reduction for such

changes as well. The internal network of the Cloud domain has a redundant and non-blocking

topology. Cloud internal links have high BW capacity, several order of magnitude higher (10 Gbps and

beyond) than e.g., legacy industrial networks (100 Mbps).

From latency perspective, within the Cloud it is easy to use over-dimensioning in the TSN/DetNet

network design. Careful design of scheduling is needed only in the (legacy) wired part of the end-to-

end communication due to the limited BW links.

The second change is about adding wireless access for actors/sensors and improving further a scenario

where virtualization and cloudification were already applied. The 6G-RAN/CN components can be

implemented close to or within the Cloud. Such a wireless access significantly decreases the number

of hops between the actor/sensor and its virtualized controller. However, the wireless hops have a

different latency distribution (higher PD and PDV). BW can be easily increased in the system by adding

additional radio resources (e.g. densification of radio cells, adding more spectrum), without the need

to touch/replace physical interfaces.

The TSN/DetNet-specific design can be simplified, as congestion scenarios can be solved with over-

dimensioning both in the radio and Cloud domain. Instead of analyzing the traffic situation/congestion

in plenty of hops, the scheduling design can focus on the radio link of the 6G System.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 43

Figure 12: Improved Architecture (adding Wireless and Cloudification)

Depending on the location of the communication partners two scenarios can be distinguished:

1. UE-UE communication with two radio legs. One is UL (uplink) and one is DL (downlink).

2. UE-UPF communication with a single radio leg, either UL or DL.

In case of two radio legs, the radio scheduling must consider both radio transmissions and deal with

possible congestions. From the perspective of end-to-end scheduling, the end-to-end (TSN) scheduler

sees only a single port-to-port delay distribution to be considered in the calculation of GCLs.

2.6.3 Impact of Improved Architecture
Using wireless links in TSN networks has both negative and positive impacts on the end-to-end system.

The PD characteristics of wireless technologies with significantly higher PDV may have a negative

impact on end-to-end latency bounds. But there are positive impacts as well, as its usage can

significantly decrease the number of network hops (i.e., in extreme cases minimize the connections

to a single transport hop). Furthermore, BW update of the whole end-to-end system is simplified and

can be controlled by radio design. Of course, wireless and wireline can be combined and finding the

best mix of the two technology is use-case dependent.

The most winning scenarios are, where (1) application controllers are moved to the local Cloud; (2)

6G-CORE implemented in the same local Cloud, and (3) actors/sensors are connected using wireless

6G technology. The impact of using an improved architecture needs to be evaluated case-by-case.

Algorithms for planning dynamic schedules and adaptation to dynamic stream sets are expected to

play a key role to achieve the required end-to-end performance of the transport network.

A detailed evaluation of the impact onto the performance of end-to-end scheduling with respect to

schedulability, complexity (runtime) of schedule calculation, etc., will be conducted in future work in

WP4.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 44

3 Algorithms for Planning Dynamic Schedules
After we have discussed the system aspects of adapting end-to-end schedules in dynamic systems,

which provide the data and mechanisms for adaptation, we now focus on the algorithms for adapting

end-to-end schedules in this section. We start with an overview, discuss related work, and then

present several approaches for calculating schedules that are (a) robust to (potentially large) PDs and

PDVs, and (b) adapt to dynamic stream sets and dynamically changing PD distributions.

3.1 Overview
When talking about adapting end-to-end schedules in dynamic systems, we first need to distinguish

between the different causes that lead to dynamic changes that schedules then need to adapt to. We

consider the following three different causes, which in turn require different approaches to calculate

robust and adaptive end-to-end schedules:

Dynamic stream sets: Streams between talkers and listeners might be added at runtime. Supporting

dynamic stream sets is a relatively common goal in research on calculating TSN schedules. So-called

incremental scheduling approaches have been proposed in the literature allowing the addition of new

streams (and removing old streams), without calculating a new schedule from scratch. Instead, the

existing schedule is extended, such that existing streams do not have to be re-scheduled and,

therefore, during the transition phase to the new schedule should not be affected (no deadline or

latency bound violations during the transition to the new schedule).

Although the problem of incremental scheduling has already received attention in the research

community, one of our approaches targeting dynamic packet delay (as discussed in Section 3.4) also

lends itself very well to adapt to dynamic stream sets.

Dynamic packet delay distributions: Dynamic characteristics of PD is one of the specific causes for

dynamic changes in wireless systems, and therefore, we focus on approaches dealing with this cause.

As introduced above, in contrast to the common assumptions in wired TSN systems, we assume PD

delay – or more specifically, the port-to-port delay in 6GDetCom nodes – to be of stochastic nature.

Therefore, we modelled it in the YANG data model presented in Section 2.3 as histograms, and

measure latency at runtime to capture the current PD and predict the future PD using a data-driven

approach. Obviously, the quality of the radio channel is affected by network conditions that are not

deterministic and known a priori, such as dynamic interference, shadowing by obstacles between

mobile station and base station, reflection, diffraction, and scattering on physical objects in the

environment, slow and fast fading of the signal, etc. All these factors can lead to dynamic bit error

rates, to dynamic frame error rates, and to a dynamic number of retransmissions. Hence, from the

perspective of TSN, they all induce stochastic packet delays that may change for different network

conditions.

Calculating robust end-to-end schedules for the theoretic worst case with very large PDV would in

many situations waste a lot of capacity. For instance, in a GCL, very conservative (long) time intervals

would be reserved for streams to cover their worst-case minimum and maximum delay bounds. This

directly impacts schedulability and scalability, i.e., the ability to accommodate many streams in the

network. Instead, we should consider (a) the actual required reliability instead of aiming for an

unrealistic 100 % reliability; (b) the actual PD distribution measured at runtime; (c) changing PD

distribution at runtime, ideally with a proactive approach (see Section 2.5) utilizing PD predictions.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 45

We present different approaches to calculate schedules that are robust to PD and can adapt to

dynamic PD distributions. One approach tries to maximize the robustness of schedules to PDV. The

idea is that such a schedule would avoid adaption as long as possible since it is sufficiently robust to

cover a large range of PD – informally speaking, it follows the principle: the best adaptation is the

adaptation that you do not have to do. Such an extreme approach might impact schedulability and

scalability, as already mentioned since it gravitates towards one extreme end in the solution space

(maximum robustness).

Figure 13: Illustration of tardiness in TSN

This motivates the other approaches that we present striving for a given reliability bound typically

below 100 %. We present a novel approach mapping the scheduling problem to a graph model with

very interesting features, such as the ability to adapt a previously calculated schedule quickly instead

of starting all over again from scratch. Moreover, it enables graceful degradation of schedules, where

the so-called tardiness (difference between deadline and actual completion time, as shown in

Figure 13) is increasing only gradually and bounds are guaranteed with certain, provable reliability

(instead of a schedule with arbitrary violations, i.e., no guarantees at all).

In the following, we will describe each of the sketched approaches in detail, after a short discussion of

the related work presented next.

3.2 Background and Related Work
We have seen above that there are different goals for adaptivity with respect to end-to-end

scheduling, namely, adaptation to dynamic stream sets (incremental scheduling) and dynamic PD

distributions. There are many existing approaches for “classic” TSN scheduling in wired networks,

which focus on other problems under fundamentally different system assumptions such as dealing

with the inherent complexity of standard scheduling problems using fast heuristics, which do not

include variable PD, mobility, or similar. For an overview of these approaches, we refer the interested

reader to existing surveys like [SOL+23].

Incremental Scheduling

Incremental scheduling, i.e., the ability to add new streams at runtime to the schedule, has received

relatively large attention in the research community since this is motivated by popular paradigms like

“plug and produce”, where machines can be added dynamically to a shop floor in production. Many

approaches focus on the problem of decreasing the runtime of schedule calculation when new

streams are added by using heuristics [RPG+17, NDR18, FGD+22]. Possibly the most interesting

approaches are those that explicitly target the calculation of extensible schedules that, informally

speaking, leave headspace for future streams when calculating the current schedule. In [GRK+21,

GRK+23], the authors propose the flexibility curve concept. The basic idea of this approach is to first

model the flexibility (number of possibilities to embed streams along paths) of a schedule to add new

streams along paths. Based on this model, new streams can be scheduled to minimize the impact on

flexibility which allows adding more streams in the future.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 46

Scheduling with Uncertainty in Time-Sensitive Networking

While uncertainty induced by stochastic packet delays remains a blind spot in existing TSN scheduling

literature, existing approaches can deal with individual transmission failures or total link failures. For

instance, Craciunas et al. [COC+16] show that complete schedule breakdowns may already occur for

small timing inaccuracies or sporadic transmission failures. The authors propose frame isolation

constraints to ensure that such faults do not impair the punctuality guarantees of other streams. While

it is straightforward to generalize this approach to include stochastic packet delays, preliminary

evaluations show that its induced resource overprovisioning prohibits the scheduler — already for a

few wireless streams — from finding eligible solutions.

Similar to our categorization in Section 2.5, existing literature covering total link failures can be

grouped into reactive and proactive approaches. For example, a reactive approach is proposed in

[PRH18] that computes an alternative route upon detecting a link failure. In contrast, [ZSE+21]

develops a proactive approach by modelling switches and transmission links with known failure

probabilities.

3.3 Maximize Reliability under Dynamic Packet Delay
In D3.1 “Report on 6G convergence enablers towards deterministic communication standards”

[DET23-D31], we already presented a basic wireless-friendly, adaptive end-to-end scheduling

algorithm. This scheduling algorithm aims to maximize reliability by maximizing the gap between any

two streams. This approach leads to improved results over already existing scheduling algorithms for

wired networks. However, this approach only considers the mean value of the estimated packet

delays. If this mean delay changes, the reliability of the calculated schedule might suddenly drop and

require for a new schedule calculation, which leads to frequent recalculations of the schedule.

As the calculation of new schedules is time-consuming, it is preferable to reduce the need for schedule

adaptation in advance. One way to achieve this is by already considering further parameters of the

delay measurements and delay predictions as provided by the mechanisms of Section 2.4 and 2.5. To

this end, we extend our approach from [DET23-D31] to take into account the known or estimated

“uncertainty” of streams.

A detailed description of the variables and constraints of this ILP-based approach can be found in

[DET23-D31]. In this report, we extend this approach and focus on the evaluation of different

optimization goals. In order to maximize the reliability in our network, we use the 𝑔𝑎𝑝𝑠,𝑡,𝑒 variable as

introduced in [DET23-D31] for every combination of two streams 𝑠, 𝑡 and every edge 𝑒 they have in

common on their path. This variable denotes the temporal distance between the completed

transmission of one stream and the transmission start of the other stream. The gap variable can be

defined by using the binary decision variable 𝑏𝑠,𝑡 which denotes, whether stream 𝑠 is scheduled before

stream 𝑡 or vice versa:

𝑖𝑓(𝑏𝑠,𝑡) → 𝑔𝑎𝑝𝑠,𝑡,𝑒 ≤ 𝑠𝑡𝑎𝑟𝑡𝑡,𝑒 − 𝑒𝑛𝑑𝑠,𝑒

𝑖𝑓(¬𝑏𝑠,𝑡) → 𝑔𝑎𝑝𝑠,𝑡,𝑒 ≤ 𝑠𝑡𝑎𝑟𝑡𝑠,𝑒 − 𝑒𝑛𝑑𝑡,𝑒

(3.1)

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 47

3.3.1 Optimization goals
In the following we present how we can use this gap variable to improve the reliability of calculated

schedules. We explain our approaches based on the example network shown in Figure 14.

Figure 14: Example network with to wireless and two wired streams

This network consists, for example, of two exoskeletons (exo[0] and exo[1]) which are connected to a

server via the 6GDetCom (detCom) node and two sensors (sensor[0] and sensor[1]) with a wired

connection to the same server via a TSN bridge (bridge1). There are four streams in this network,

𝑒𝑥𝑜1, 𝑒𝑥𝑜2, 𝑠𝑒𝑛𝑠𝑜𝑟1 and 𝑠𝑒𝑛𝑠𝑜𝑟2. All streams transmit data from the respective device to the server

connected to bridge1. The 𝑒𝑥𝑜 streams transmit data every 10 𝑚𝑠 and need to arrive within their

cycle time of 10 𝑚𝑠. The 𝑠𝑒𝑛𝑠𝑜𝑟 streams transmit data every 5 𝑚𝑠 and have a maximum end-to-end

latency requirement of 100 𝜇𝑠. Our simulation uses the uplink histogram PD-Wireless-5G-1 from

[DET23-D41] with a mean of 𝜇 = 5.6 𝑚𝑠 and a standard deviation of 𝜎 = 500 𝑛𝑠 for the wireless link

within the 6GDetCom node. We assume that all other delays, such as the link delay for wired links and

the processing delay of switches are constant.

Optimization Objectives.

As already proposed in D3.1, one approach (further referred to as Approach 𝐴) to increase the

reliability in the network is to maximize the gap between streams by summing up all gap variables 𝑔 ∈

𝐺 using the following formula:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ 𝑔

𝑔∈𝐺

) (3.2)

We have already shown that this approach leads to better results than a scheduling approach solely

developed for wired networks. However, this approach has one drawback: In bigger networks, some

streams share more edges than other streams. In our example network, this corresponds to the 𝑒𝑥𝑜

streams sharing two edges with each other while the other streams only share one network link. When

maximizing the sum of all gaps, this approach increases the time gap between streams with more

common edges more than other streams, which is not the desired behavior.

To circumvent this undesired behavior, we propose a new optimization approach (Approach 𝐵), which

maximizes the sum of the smallest gaps between every pair of streams. To this end, we introduce a

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 48

new variable 𝑔𝑎𝑝𝑠,𝑡 which denotes the minimal gap between the two streams 𝑠 and 𝑡. We ensure this

behavior by introducing a new constraint, which forces this gap variable to be smaller or equal to the

gap variable of any edge between 𝑠 and 𝑡:

∀𝑒 ∈ 𝐸: 𝑔𝑎𝑝𝑠,𝑡 ≤ 𝑔𝑎𝑝𝑠,𝑡,𝑒 (3.3)

We denote the set of these per-stream-pair gap variables as 𝐺𝑠. By summing up all gap variables 𝑔 ∈

𝐺𝑠, we obtain our new optimization goal, similar as before.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ 𝑔

𝑔∈𝐺𝑠

) (3.4)

Weighting based on uncertainty.

The optimization goal presented above now treats all streams equally and aims to evenly distribute

them along the cycle time. Our example network, however, contains two different types of streams

with different characteristics. The 𝑒𝑥𝑜 streams suffer from a high PDV as described in our simulation

setup above, while the sensor streams don’t have any PDV configured, as they are only present in the

wired part of the network. The approach presented above, however, does not distinguish between

these different types of streams. Thus, it also maximizes the gap between the 𝑠𝑒𝑛𝑠𝑜𝑟 streams even

though they do not influence each other. We aim to make use of the knowledge of different stream

characteristics to further optimize our approach.

In the following, we assume our scheduler receives a delay distribution, e.g. by the CNC as described

in Section 2.4 and 2.5. We can use this delay distribution to derive a metric of “uncertainty”. This

uncertainty can hold different values, such as the standard deviation of the delay distribution, the

min-max bounds or expected changes to the delay distribution in the future. For the evaluation in this

work we utilize the standard deviation of the provided delay distribution.

In our first modification (Modification 𝛼), we aim to minimize the effect of streams with a higher

uncertainty onto streams with lower uncertainty. To this end, we modify our optimization goal to

move streams with a higher uncertainty further apart and streams with a lower uncertainty closer

together. Our approach first defines a weight parameter 𝑤𝑠,𝑧 for two streams 𝑠,𝑡 based on the sum of

their standard deviations 𝜎𝑠 and 𝜎𝑠. Afterwards, the weights are normalized using the Greatest

Common Divisor (GCD) of all weights, i.e. we calculate the GCD of all weights and divide all weights by

this GCD. This helps to keep the weights small in order to prevent numerical issues in the ILP solver.

In our example network, this leads to the following weights:

𝑤𝑒𝑥𝑜1,𝑒𝑥𝑜2 = 2; 𝑤𝑠𝑒𝑛𝑠𝑜𝑟1,𝑠𝑒𝑛𝑠𝑜𝑟2 = 0

𝑤𝑒𝑥𝑜1,𝑠𝑒𝑛𝑠𝑜𝑟1 = 𝑤𝑒𝑥𝑜1,𝑠𝑒𝑛𝑠𝑜𝑟2 = 𝑤𝑒𝑥𝑜2,𝑠𝑒𝑛𝑠𝑜𝑟1 = 𝑤𝑒𝑥𝑜2,𝑠𝑒𝑛𝑠𝑜𝑟2 = 1;

We then use these weights to the objectives from our previous approaches in the following ways:

For Approach 𝐴𝛼 when maximizing the sum of all streams gap variables as in (3.2):

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ 𝑤𝑠,𝑡 ⋅ 𝑔𝑠,𝑡,𝑒

𝑔𝑠,𝑡,𝑒∈𝐺

) (3.5)

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 49

For Approach 𝐵𝛼 when summing up the per-stream-pair gap variables as in (3.4):

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ 𝑤𝑠,𝑡 ⋅ 𝑔𝑠,𝑡

𝑔𝑠,𝑡∈𝐺𝑠

) (3.6)

We assume that our 𝛼 modification leads to better results than the approaches without any

modification. However, when two streams suffer from a higher uncertainty, the effect of a collision

on those streams might be negligible compared to the uncertainty. To this end, we propose another

modification (Modification 𝛽), which calculates weights based on the similarity of the provided

uncertainty, i.e. when two streams have a similar uncertainty, the weight is low and when the

uncertainty differs, the weight is high. For this approach, we calculate the weight 𝑤𝑠,𝑡 by calculating

the absolute difference of the standard deviations |𝜎𝑠 − 𝜎𝑡| and again normalizing it with the GCD of

all weights. This leads to the following weights for our example network:

 𝑤𝑒𝑥𝑜1,𝑒𝑥𝑜2 = 𝑤𝑠𝑒𝑛𝑠𝑜𝑟1,𝑠𝑒𝑛𝑠𝑜𝑟2 = 0

𝑤𝑒𝑥𝑜1,𝑠𝑒𝑛𝑠𝑜𝑟1 = 𝑤𝑒𝑥𝑜1,𝑠𝑒𝑛𝑠𝑜𝑟2 = 𝑤𝑒𝑥𝑜2,𝑠𝑒𝑛𝑠𝑜𝑟1 = 𝑤𝑒𝑥𝑜2,𝑠𝑒𝑛𝑠𝑜𝑟2 = 1;

3.3.2 Evaluation
For our evaluation of the approaches presented above, we use networks structured as our example

network from Figure 14 but with a varying number of network devices up to 150 total devices. The

packet size for each stream is randomly chosen to be between 16 𝐵 and 512 𝐵. We use a scheduling

algorithm for a wired network as our baseline approach (𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 0).

Figure 15 shows the percentage of late packets between our different approaches. We can see that

all our wireless-friendly optimization goals are able to improve upon the baseline scheduling approach

for wired networks. 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝐴 mainly reduces the percentage of late packets for the worst streams

while 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝐵 is also able to improve the mean and median percentage of late streams. We can

also see that considering further information about the expected uncertainty of a stream with

𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝛼 and 𝛽 improves the percentage of late packets even further.

In Figure 16 we can see that our 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝐵 is also able to reduce the arrival time jitter for the sensor

streams.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 50

Figure 15: Percentage of late packets of sensor streams per approach

Figure 16: Average arrival time jitter of sensor streams per approach

Our evaluation shows that choosing different optimization goals clearly improves upon scheduling

approaches created for wired networks. Additionally, it suggests that utilizing further “uncertainty”

metrics reduce the number of late packets even further which can be used as an advantage to defer

the need for adapting schedules.

3.4 Adaptation to Dynamic Packet Delays
While maximizing the reliability against dynamic packet delays, as discussed in Section 3.3, can defer

the need to adapt the schedule to some degree, employing this approach in a stand-alone manner has

two disadvantages:

1. Reliability guarantees can only be made after the schedule has been computed. That is, the

approach of Section 3.3 aims to maximize the achieved reliability guarantees while the

streams’ end-to-end latency requirements are satisfied. Instead, the strategy described in this

section conserves the reliability guarantees of each stream and aims to optimize the

schedule’s maximum tardiness.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 51

2. Section 3.3 cannot circumvent the need for adaptation entirely. For example, Figure 17 shows

the wireless transmission interval for a single frame 𝑓 across a wireless link [𝑢, 𝑣]. While the

corresponding schedule may achieve a reliability guarantee of 33.33% for 𝑓, its reliability

already plummets to below 1.5% when the uplink histogram is only shifted by one millisecond

to the right.

Figure 17: Reliability impairment caused by wireless channel degradation

To address both shortcomings, we devise a linear-time adaptation strategy to eliminate reliability

impairments of Figure 17b. Section 3.4.1 introduces shuffle graphs as a natural graphical

representation of schedules in wireless TSN. Thereafter, Section 3.4.2 introduces a simple adaptation

strategy that, based on shuffle graphs, can adapt the schedule in linear time. Finally, Section 3.4.3 and

Section 3.4.4 illustrates the impact of our proposed adaptation strategy and discusses its implications

on the Deterministic6G infrastructure. For additional details, we refer the reader to [Egg24].

Remark: To improve visualization, we use rather small reliability requirements of, for example,

33.33% throughout this section. The presented concepts can, however, be applied analogously for

requirements that far exceed 99%.

3.4.1 Shuffle Graphs as a Graphical Representation of TSN Schedules
We devise a graphical representation of TSN schedules to enable a linear-time adaptation strategy. To

this end, we adjust the Disjunctive Graph Model (DGM) — a well-established tool from job-shop

scheduling — to incorporate exactly the scheduling capabilities of TSN bridges.

Figure 17a: Before degradation Figure 17b: After degradation

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 52

Figure 18: Simple network (a) and transmission order determined by a scheduler (b)

Disjunctive Graph Selections. In the first step, the scheduler is employed to compute the Gate Control

Lists (GCL) for each egress port of each TSN bridge. While schedulers typically discard additional

information that is not encoded in the GCLs, we require the scheduler to further define the intended

transmission order of each egress port. For example, Figure 18a shows a simple network topology with

three message streams {𝑓1, 𝑓2, 𝑓3} that traverse the network from mobile talkers 𝑇1, 𝑇2 to the listener

𝐿. By computing an IEEE 802.1Qbv schedule to configure the GCLs, the scheduler implicitly defines the

transmission order, i.e., the disjunctive graph selection, as in Figure 18b. This selection encodes two

vital types of constraints:

• 𝑂𝑓1

1 → 𝑂𝑓1

2 encodes that the second transmission of 𝑓1(i.e., via [𝐵1, 𝐵2]) can only commence

after the first transmission of 𝑓1 (i.e., via [𝑇1, 𝐵1]) completed.

• 𝑂𝑓1

2 → 𝑂𝑓2

2 specifies the order of the contesting transmissions of 𝑓1and 𝑓2 via [𝐵1, 𝐵2].

Discussion. While [Egg24] contains the formal definition of disjunctive graphs and consistent

selections, this document addresses the central considerations from a system design perspective:

How do disjunctive graphs cover the scheduling capabilities of TSN bridges? Reviewing Figure 18b,

we illustrate that the IEEE 802.1Qbv capabilities do not support arbitrary transmission orders. For

instance, if both 𝑓1and 𝑓2 share the same Priority Code Point (PCP), bridge 𝐵1must transmit 𝑓1first if

and only if 𝑓1 is enqueued first. Consequently, we constrain that 𝑂𝑓1

2 → 𝑂𝑓2

2 and 𝑂𝑓1

3 → 𝑂𝑓2

3 share the

same orientation. Furthermore, disjunctive graphs must not induce any cyclic dependencies between

transmissions.

How do disjunctive graphs support modelling OFDMA? Compared to mutual exclusion constraints

that are typically employed for scheduling in wired TSN, disjunctive graphs also support modelling

OFDMA by virtually duplicating wireless links. For example, 𝑇1 may employ different frequency bands

for transmitting 𝑓1and 𝑓2, eliminating the streams’ temporal transmission contest. By duplicating the

wireless link [𝑇1, 𝐵1] for each available frequency band, the scheduler must specify the allocated

Resource Blocks (RB) for each wireless transmission. Consequently, if the frequency bands for 𝑓1and

Figure 18a: Network topology Figure 18b: Transmission Order

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 53

𝑓2 are non-overlapping, the disjunctive graph in Figure 18b does not include an edge 𝑂𝑓1

1 → 𝑂𝑓2

1 ,

implying that 𝑓1and 𝑓2 can be transmitted concurrently over [𝑇1, 𝐵1].

How do disjunctive graphs compare to alternative modelling approaches? Disjunctive graphs provide

a higher degree of modelling freedom over existing approaches. In particular, typical approaches often

consider frame-based transmission orderings, where a frame 𝑓1 is transmitted over [B, B’] before 𝑓2 if

and only if 𝑓1is transmitted over all joint links before 𝑓2. Such coarse-grained approaches appear

unfavorable in more complex network topologies that contain diamond structures (such as in Figure

19). In contrast, disjunctive graphs provide full decision-flexibility to the scheduler.

Figure 19: Diamond network

Shuffle Graphs. While disjunctive graph selections encode the transmission order for each egress port,

we derive shuffle graphs as a one-to-one graphical representation of a wireless TSN schedule. For

instance, Figure 20 shows the corresponding shuffle graph of Figure 18b. In this simplified setting, the

shuffle graph is derived in two steps:

1. Add FIFO edges to isolate potential frame transmission faults. That is, for each edge of the

form 𝑂𝑓1

2 → 𝑂𝑓2

2 — specifying that 𝐵1 transmits 𝑓1 before 𝑓2 via [𝐵1, 𝐵2] — the shuffle graph

adds the FIFO edge 𝑂𝑓1

2 → 𝑂𝑓2

1 to ensure that 𝑓2 does not arrive too early at 𝐵1. Otherwise, it

may occur that 𝑓2’s early arrival at 𝐵1 causes 𝑓2 to “steal” the transmission slot of 𝑓1,

potentially impairing the reliability of 𝑓2 itself (when dropped by PSFP at 𝐵2) or the reliability

of other high-criticality streams due to interference at subsequent egress queues.

2. Add transmission weights to separate the transmission offsets accordingly: 𝑤 (0 → 𝑂𝑓𝑖

𝑗
)

corresponds to the release time of 𝑓𝑖 at its talker. 𝑤 (𝑂𝑓𝑖

𝑗
→ 𝑂𝑓𝑖

𝑗+1
) specifies an upper bound

for 𝑓𝑖’s transmission over its jth hop, consisting of processing, propagation, and transmission

delay. For example, 𝑤(𝑂𝑓1

1 → 𝑂𝑓1

2) = 5.966𝑚𝑠 equals the upper bound of Figure 17a to

achieve a reliability of 33.33%, whereas 𝑤(𝑂𝑓1

2 → 𝑂𝑓1

3) = 1.5𝑚𝑠 conservatively bounds the

delay of 𝑓1 via wired Ethernet links.5 Finally, we set 𝑤 (𝑂𝑓𝑖

𝑗
→ 𝑂𝑓𝑘

𝑙−1) = 𝑑𝑚𝑎𝑥 (𝑂𝑓𝑖

𝑗
) −

𝑑𝑚𝑖𝑛(𝑂𝑓𝑘

𝑙−1) to isolate transmission faults. For example 𝑤(𝑂𝑓1

2 → 𝑂𝑓2

1) = 1.5𝑚𝑠 − 5.348𝑚𝑠 =

 −3.848𝑚𝑠 ensures that 𝑓2 only arrives at 𝐵1 after the transmission of 𝑓1 via [𝐵1, 𝐵2]

completed.

5 We choose 1.5𝑚𝑠 to increase visibility in Figure 22. A more realistic setting may set 𝑤(𝑂𝑓1

2 → 𝑂𝑓1

3) = 12 µ𝑠 to

include the transmission delay
100𝑏𝑦𝑡𝑒

100 𝑀𝑏𝑖𝑡 𝑠−1 = 8µ𝑠 and to bound the processing and propagation delay by 4µ𝑠.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 54

Figure 20: Shuffle graph induced by the selection of Figure 18b

Deriving TSN Configurations. Shuffle graphs directly encode the GCL and PSFP configuration for each

TSN bridge and each 6GDetCom node, as shown in Figure 20. In particular, the longest path 𝐶(𝑂𝑓𝑖

𝑗
)

from source 0 to an operation 𝑂𝑓𝑖

𝑗
 corresponds to the transmission offset of 𝑓𝑖’s transmission over its

𝑗th hop. The GCL of [𝐵1, 𝐵2] then contains an entry [𝑜, 𝑐] for 𝑓2’s transmission, where the gate

• opens at time 𝑜 = 𝑆𝑚𝑖𝑛([𝐵1, 𝐵2], 𝑓2) = 𝐶(𝑂𝑓2

2) = 2 × 5.966𝑚𝑠 − 3.848𝑚𝑠 = 8.062𝑚𝑠, and

• closes at time 𝑐 = 𝑆𝑚𝑎𝑥([𝐵1, 𝐵2], 𝑓2) = 𝐶(𝑂𝑓2

2) + 1.5𝑚𝑠 = 9.562𝑚𝑠.

Analogously, we define PSFP enforced intervals that discard any frames that arrive outside their

specification. In case of 𝑓2’s transmission via [𝑇1, 𝐵1]2, the transmission may last between 5.348𝑚𝑠

and 5.966𝑚𝑠 to achieve a reliability of 33.33% (see Figure 17a). We therefore configure the PSFP

enforced interval to forward 𝑓2 at 𝐵1if and only if it arrives within [𝑅𝑚𝑖𝑛(𝐵1, 𝑓2), 𝑅max(𝐵1, 𝑓2)], where

• 𝑅𝑚𝑖𝑛(𝐵1, 𝑓2) = (𝑆𝑚𝑖𝑛 + 𝑑𝑚𝑖𝑛)([𝑇1, 𝐵1], 𝑓2) = 𝐶(𝑂𝑓2

1) + 5.348𝑚𝑠 = 7.466𝑚𝑠, and

• 𝑅𝑚𝑎𝑥(𝐵1, 𝑓2) = 𝑅𝑚𝑖𝑛(𝐵1, 𝑓2) + 5.966𝑚𝑠 − 5.348𝑚𝑠 = 8.084𝑚𝑠.

In case 𝑓2 does not arrive at 𝐵1 within said interval, 𝐵1 must either discard 𝑓2 or demote 𝑓2 (e.g., to

best-effort).

To realize a traversal of the shuffle graph that is linear in the number of transmission operations, it is

important to avoid traversing implicit edges. For instance, Figure 20 no longer contains any edge from

𝑓1’s operations to 𝑓3’s operations. This is because a any FIFO edge like 𝑂𝑓1

2 → 𝑂𝑓3

1 can be substituted

by the existing path 𝑂𝑓1

2 → 𝑂𝑓2

1 → 𝑂𝑓2

2 → 𝑂𝑓3

1 .

Figure 21: Simulated timeline for adapting the end-to-end TSN schedule

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 55

Figure 22: Schedule encoded by shuffle graph of Figure 20

3.4.2 Linear-Time Adaptation Strategy
Shuffle graphs enable a simple adaptation strategy to uphold the reliability guarantees even for

degrading wireless channels as in Figure 17b. We consider a timeline as depicted in Figure 21: For an

initial PD distribution, the scheduler is allowed to find and optimize a TSN schedule for a relatively

long time (here, for five minutes). After that, the prediction service notifies the end-to-end scheduler

of updated PD distributions which invalidates the initially computed TSN schedule. The scheduler then

only has a short timespan (here, ten seconds) to find an adapted solution before the new TSN

configuration is due. For the adapted transmission intervals, we consider different degradation

patterns (mirrored, skewed, shifted), which are used in Section 3.4.4 to evaluate our adaptation

strategy.

Shuffle graphs allow for a highly efficient adaptation strategy with a runtime that is linear in the

number of frame transmissions per hypercycle. This is achieved by first adjusting the reserved

transmission intervals for the updated PD distributions, e.g., from [5.348𝑚𝑠, 5.966𝑚𝑠] to

[6.348𝑚𝑠, 6.966𝑚𝑠] to regain a reliability guarantee of 33.33% in Figure 17. Subsequently, a single

linear-time traversal of the shuffle graph suffices to update its weighted edges and to derive the

adapted TSN configuration, as described in Section 3.4.1.

Reviewing Figure 22, we can analyze the impact of adapting the schedule to accommodate for the

degraded wireless channel. Assuming for simplicity that only the transmission of 𝑓1 is affected, the

adapted schedule would need to shift all remaining transmissions by 1𝑚𝑠 forward in time to retain a

robust schedule. Consequently, our adaptation strategy converts streams’ reliability impairments (as

in Figure 17b) into tardiness where the schedule may no longer satisfy all end-to-end latency

requirements of the message streams. By symmetry, however, we find that our adaptation strategy

converts streams’ reliability surpluses (of improving wireless channels) into additional slack that

provides lower-priority traffic with additional transmission opportunities. In latter case, our

adaptation strategy thus allows for an almost immediate redeployment of the new TSN configuration

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 56

3.4.3 Evaluation

Figure 23: Maximum tardiness (𝑇𝑚𝑎𝑥) after adapting the schedule as in Section 3.4.2 (white box plots) and
after additional rescheduling for 10 seconds (grey box plots)

As discussed in Section 3.4.2, our adaptation strategy converts reliability impairments of degrading

wireless channels into tardiness of the adapted schedule. To evaluate the impact of this conversion,

we consider three degradation patterns that modify the initial transmission interval [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥] via

• shifting [𝑑𝑚𝑖𝑛 + 𝑑, 𝑑𝑚𝑎𝑥 + 𝑑],

• skewing [𝑑𝑚𝑖𝑛 + 0, 𝑑𝑚𝑎𝑥 + 𝑑], and

• mirroring [𝑑𝑚𝑖𝑛 − 𝑑, 𝑑𝑚𝑎𝑥 + 𝑑].

For example, Figure 17b corresponds to a shifted degradation with 𝑑 = 1𝑚𝑠.

We consider a simple network that consists of two wired partitions. Each partition comprises 15 TSN

bridges in a tree topology where the root bridges are connected by a wireless link. We consider fixed

wireline traffic of 50 frames per hypercycle that stay within their respective partition but require a

short end-to-end latency of 200µ𝑠 and zero arrival jitter at their listeners. In comparison, we vary the

number of wireless streams that utilize the wireless link to traverse across both partitions. Each

wireless stream requires a reliability of 33.33% to arrive at their listeners within an end-to-end latency

of 10𝑚𝑠 and a jitter of 5𝑚𝑠 [DET23-D11].

Figure 23 shows the results for skewed degradation patterns with 20 wireless streams (a) and for

mirrored degradation patterns with 60 wireless streams (b). We evaluate the maximum tardiness

𝑇𝑚𝑎𝑥 of the adapted schedule, i.e., the maximum delay between actual and expected arrival

experienced by wireless or wireline streams. Figure 23 shows an expected linear increase in the

maximum tardiness for degrading wireless channels.

By reapplying the metaheuristic scheduler of [Egg24] for a short period of time (≤ 10𝑠), the adapted

schedule can be improved drastically. For Figure 23a, rescheduling is even able to eliminate the

induced tardiness entirely, allowing to continuously guarantee the streams’ end-to-end latency

requirements. Figure 23b illustrates, however, that while rescheduling is highly effective, it cannot

Figure 23a: 20 wireless streams Figure 23b: 60 wireless streams

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 57

provide any formal guarantees about finding an optimal scheduling within an arbitrarily small period.

In the following, we therefore discuss the implications of our adaptation strategy to the

Deterministic6G infrastructure.

3.4.4 Discussion
Our summarized findings show that shuffle graphs provide a linear-time adaptation strategy to

i. convert reliability impairments of degrading channels into tardiness, and to

ii. convert reliability surpluses of improving channels into additional slack.

To further reduce the tardiness of (i), we find that the metaheuristic rescheduling of [Egg24] is highly

effective but cannot provide any formal guarantees about finding an optimal solution within a small

period of time. We therefore argue that the reliability contracts between upper-layer services and the

infrastructure provider should specify a graceful degradation of end-to-end latency guarantees for a

wide range of channel degradation patterns. For instance, these contracts should specify a worst-case

degradation scenario beyond which no formal end-to-end guarantees can be made. Still (i) and (ii) can

be utilized to define optimal or near-optimal graceful degradation bounds in the reliability contracts.

While (i) and (ii) may be employed in a reactive scheduling approach where the channel prediction

alerts the CNC of improving or degrading channel qualities, it is also possible to employ (ii) for

proactive scheduling mechanisms. More specifically, a proactive approach initially computes a

sequence of eligible schedules (𝑆𝑖)𝑖=1
𝑛 for accompanying channel predictions (𝑃𝑖)𝑖=1

𝑛 . Then, for an

updated channel prediction 𝑃𝑛+1 with improved wireless channel states over 𝑃𝑗 (1 ≤ 𝑗 ≤ 𝑛), (ii) can

be utilized to efficiently transform 𝑆𝑗 into an eligible schedule 𝑆𝑛+1 that provides additional

transmission opportunities to lower-priority traffic.

3.5 Adaptation to Dynamic Stream Sets
Section 3.4 adapted the schedule to degrading or improving wireless channels for a fixed stream set.

We now extend the adaptation strategy to incorporate joining and leaving message streams. Similar

to Section 3.4, the extended adaptation strategy consists of two phases:

1. Employ an initial heuristic 𝐻 to adapt the schedule.

2. Reapply the metaheuristic scheduler of [Egg24] to reduce the schedule’s tardiness.

This section focuses on devising suitable initial heuristics to account for dynamic stream sets. To this

end, we identify two central requirements: First, 𝐻 should be fast, i.e., instead of relying on an

exhaustive search to find an optimal solution, it should leave optimizing the schedule to the second

phase. Second, 𝐻 should avoid modifying the schedule for streams that are unaffected by the dynamic

stream set change to ease configuring the TSN bridges with the updated gate control lists.

More concretely, the initial heuristic 𝐻 receives the initial stream set 𝐹 which is subsequently modified

by removing the leaving streams 𝐹𝑙 and by adding the joining streams 𝐹𝑗, i.e., 𝐹 ← (𝐹 \ 𝐹𝑙) ∪ 𝐹𝑗. We

start by removing 𝐹𝑙 (see Section 3.5.1) to introduce additional gaps in the schedule that can be filled

by adding 𝐹𝑗 (see Section 3.5.2).

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 58

3.5.1 Adaptation to Leaving Streams
Employing the shuffle graphs of Section 3.4.1 to represent wireless TSN schedules, we devise a simple

adaptation strategy that replaces transmission operations 𝑂𝑓𝑖

𝑗
 of leaving frames 𝑓𝑖 ∈ 𝐹𝑙 with

placeholders 𝑂𝑝𝑖

𝑗
 (see Figure 24). When deriving the TSN configuration thereafter, the placeholders

are used to retain the original transmissions of 𝐹 \ 𝐹𝑙 = {𝑓1, 𝑓3} while no GCL entries are set for 𝑂𝑝2

𝑗
.

Figure 24: Shuffle graph after stream 𝑓2 is removed and replaced by a placeholder 𝑝2

From a practical perspective, it is not required to directly compute a TSN configuration for the

intermediate step 𝐹 \ 𝐹𝑙. It is therefore sufficient to simply mark each 𝑓 ∈ 𝐹𝑙 as removed, indicating

the subsequent routines to handle each operation 𝑂𝑓
𝑗
 as a placeholder. This process can therefore be

completed within time #𝐹𝑙. Still, to avoid traversing an overwhelming amount of placeholder

operations in the shuffle graph, it is advisable to merge neighboring placeholders that share the same

transmission link.

3.5.2 Adaptation to Joining Streams
For every joined stream 𝑓 ∈ 𝐹𝑗, we sequentially determine the schedule of each hop in 𝑓’s route. That

is, for each (unscheduled) operation 𝑂𝑓
𝑖 , we initially compute the current transmission order 𝑓1 →

𝑓2 → ⋯ → 𝑓𝑘 of already scheduled frames. Thereafter, the heuristic 𝐻 aims to find a suitable position

𝑗 where 𝑓 should be inserted, i.e., yielding the updated transmission order 𝑓1 → ⋯ 𝑓 → 𝑓𝑗 → ⋯ 𝑓𝑘 at

the 𝑖th transmission hop of 𝑓’s route.

We can define a simple upper bound for the position 𝑗 as follows: 𝑓 must not be scheduled after 𝑓𝑘 if

𝑓’s resulting transmission time is after its effective deadline. The effective deadline of 𝑂𝑓
𝑖 is

determined by subtracting 𝑓’s remaining transmission delays from its deadline at the listener. In other

words, if 𝑓 would be transmitted at its 𝑖th hop after 𝑓𝑘, it would no longer be able to satisfy its end-

to-end latency requirement.

To determine a lower bound for position 𝑗, we include the requirement that 𝐻 should avoid modifying

the schedule for unaffected streams 𝑓𝑘 ∈ 𝐹 \ 𝐹𝑙. Hence, 𝑓 may only be inserted before 𝑓𝑘 if the

transmission offset of 𝑓𝑘 is not delayed, e.g., there exists a sufficiently large placeholder between 𝑓𝑘−1

and 𝑓𝑘 in the shuffle graph.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 59

4 Conclusions & Future Work
In this report, we have presented system concepts and algorithms to implement dependable end-to-

end communication in dynamic systems of wired and, in particular, wireless network elements

(wireless TSN bridges called 6GDetCom nodes). With respect to system concepts, we presented:

• A YANG data model to model dynamic stochastic packet delay (port-to-port delay). This model

provides the information required to calculate and adapt end-to-end schedules to the

network control logic (algorithms) executed by the CNC.

• Proactive and reactive approaches based on the NETCONF protocol to trigger the adaptation

of end-to-end schedules and reduce the time while which the end-to-end schedule might be

broken during the transition phase.

• The wireless by-pass characteristic to enhance path redundancy and reduce the complexity of

end-to-end scheduling.

• Different algorithms to (a) maximize reliability under dynamic packet delay, (b) enable fast

adaptation by modifying existing schedules (instead of starting from scratch), (c) enable

graceful degradation under degrading packet delay.

Altogether, these novel concepts make a large step towards dependable communication in dynamic

wireless 6G systems that goes significantly beyond the assumptions made for “deterministic” wired

systems.

As a next step, we relax the assumption to operate in a single domain with a global view onto all

system parameters and consider multi-domain systems. In such multi-domain systems, it will become

crucial to divide the control among the different domains of a larger or administratively distributed

system. Obviously, this step from a single fully centralized system to multiple interacting systems

poses new challenges for end-to-end scheduling spanning now paths over multiple domains. This leads

to new questions such as how to split the end-to-end budget of end-to-end delay between the

different domains and how to “divide-and conquer” the end-to-end system?

References
[3GPP23-22261] 3GPP TS 22.261, Service Requirements for the 5G System, v19.4.0, 2023
[3GPP24-23501] 3GPP TS 23.501, System architecture for the 5G System (5GS), v18.5.0,

2024
[3GPP24-28552] 3GPP TS 28.552, Technical Specification Group Services and System

Aspects, Management and orchestration; 5G performance
measurements, V18.6.0, 2024

[COC+16] S. S. Craciunas, R. S. Oliver, M. Chmelík, W. Steiner: Scheduling Real-
Time Communication in IEEE 802.1Qbv Time Sensitive Networks. In:
Proceedings of the 24th International Conference on Real-Time
Networks and Systems (RTNS 2016), 2016, DOI:
10.1145/2997465.2997470

[Del04] T. DelSole: Predictability and Information Theory. Part I: Measures of
Predictability, Journal of the Atmospheric Sciences, 61(20), October
2004, DOI: 10.1175/1520-0469(2004)061<2425:PAITPI>2.0.CO;2

[DET23-D11] DETERMINISTIC6G, Deliverable 1.1, DETERMINISTIC6G Use Cases and
Architecture Principles, June 2023

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 60

[DET23-D21] DETERMINISTIC6G, Deliverable 2.1, First report on 6G centric enabler,
Dec. 2023

[DET23-D31] DETERMINISTIC6G, Deliverable 3.1, Report on 6G convergence enablers
towards deterministic communication standards, Dec. 2023

[DET23-D41] DETERMINISTIC6G, Deliverable 4.1, DETERMINISTIC6G DetCom
simulator framework release 1, Dec. 2023

[DET24-D12] DETERMINISTIC6G, Deliverable 1.2, First report on DETERMINISTIC6G
architecture, April 2024

[DET24-D42] DETERMINISTIC6G, Deliverable 4.1, Latency measurement framework,
March 2024

[Egg24] Simon Egger, Adaptive Robustness in Wireless Time-Sensitive Networks
(TSN), Master’s Thesis, University of Stuttgart, April 2024

[FGD+22] J. Falk , H. Geppert , F. Dürr, S. Bhowmik, K. Rothermel: Dynamic QoS-
Aware Traffic Planning for Time-Triggered Flows in the Real-Time Data
Plane, IEEE Transactions on Network and Service Management, 19(2),
June 2022, DOI: 10.1109/TNSM.2022.3150664

[GRK+21] C. Gärtner, A. Rizk, B. Koldehofe, R. Hark, R. Guillaume. R. Steinmetz:
Leveraging Flexibility of Time-Sensitive Networks for dynamic
Reconfigurability. In: Proceedings of the 2021 IFIP Networking
Conference (IFIP Networking), June 2021, DOI:
10.23919/IFIPNetworking52078.2021.9472834

[GRK+23] Christoph Gärtner, A. Rizk, B. Koldehofe, R. Guillaume, R. Kundel, R.
Steinmetz: Fast Incremental Reconfiguration of Dynamic Time-Sensitive
Networks at Runtime. Computer Networks: The International Journal of
Computer and Telecommunications Networking, 224(C), Apr 2023, DOI:
10.1016/j.comnet.2023.109606

[IEEE14-802] 802-2014, IEEE Standard for Local and Metropolitan Area Networks:
Overview and Architecture, 2014, DOI: 10.1109/IEEESTD.2014.6847097

[IEEE15-8021Qbv] 802.1Qbv-2015, IEEE Standard for Local and metropolitan area
networks – Bridges and Bridged Networks - Amendment 25:
Enhancements for Scheduled Traffic, 2015, DOI:
10.1109/IEEESTD.2016.8613095

[IEEE17-8021Qci] 802.1Qci-2017, IEEE Standard for Local and metropolitan area networks-
-Bridges and Bridged Networks – Amendment 28: Per-Stream Filtering
and Policing, 2017, DOI: 10.1109/IEEESTD.2017.8064221

[IEEE18-8021Qcc] 802.1Qcc-2018, IEEE Standard for Local and Metropolitan Area
Networks--Bridges and Bridged Networks – Amendment 31: Stream
Reservation Protocol (SRP) Enhancements and Performance
Improvements, 2018, DOI: 10.1109/IEEESTD.2018.8514112

[IEEE22-8021Q] 802.1Q-2022, IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks, 2022, DOI:
10.1109/IEEESTD.2022.10004498

[IEC/IEEE24-60802] IEC/IEEE 60802, Time-Sensitive Networking Profile for Industrial
Automation, Draft 2.2, April 2024

[IETF06-RFC4253] Internet Engineering Taskforce (IETF), RFC 4252, The Secure Shell (SSH)
Authentication Protocol, 2006

[IETF11-RFC6101] Internet Engineering Taskforce (IETF), RFC 6101, The Secure Sockets
Layer (SSL) Protocol Version 3.0, 2011

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 61

[IETF11-RFC6241] Internet Engineering Taskforce (IETF), RFC 6241, Network Configuration
Protocol (NETCONF), June 2011

[IETF16-RFC7950] Internet Engineering Taskforce (IETF), RFC 7950, The YANG 1.1 Data
Modeling Language, August 2016

[IETF18-RFC8446] Internet Engineering Taskforce (IETF), RFC 8446, The Transport Layer
Security (TLS) Protocol Version 1.3, August 2018

[IETF19-RFC8639] Internet Engineering Taskforce (IETF), RFC 8639, Subscription to YANG
Notifications, September 2019

[IETF19-RFC8641] Internet Engineering Taskforce (IETF), RFC 8641, Subscription to YANG
Notifications for Datastore Updates, September 2019

[IETF99-RFC2246] Internet Engineering Taskforce (IETF), RFC 2246, The TLS Protocol,
Version 1.0, 1999

[MNS+23] S. Mostafavi, R. Nandan, G. P. Sharma, J. Gross: Latency Probability
Prediction for Wireless Networks: Focusing on Tail Probabilities. In
Proceedings of IEEE Global Communications Conference (GLOBECOM
2023), December 2023

[MSG23] S. Mostafavi, G. P. Sharma, J. Gross: Data-Driven Latency Probability
Prediction for Wireless Networks: Focusing on Tail Probabilities,
arXiv:2307.10648, 2023, DOI: 10.48550/arXiv.2307.10648

[MTS+24] S. Mostafavi, M. Tillner, G. P. Sharma, J. Gross: EDAF: An End-to-End
Delay Analytics Framework for 5G-and-Beyond Networks. In Proceedings
of the 11th International Workshop on Computer and Networking
Experimental Research using Testbeds (CNERT 2024) at INFOCOM, May
2024, DOI (arXiv pre-preprint): 10.48550/arXiv.2401.09856

[NDR18] N. G. Nayak, F. Dürr, and K. Rothermel: Incremental Flow Scheduling
and Routing in Time-Sensitive Software-Defined Networks, IEEE
Transactions on Industrial Informatics, 14(5), May 2018, DOI:
10.1109/TII.2017.2782235

[PRH18] F. Pozo, G. Rodriguez-Navas, H. Hansson: Schedule Reparability:
Enhancing Time-Triggered Network Recovery Upon Link Failures. In:
2018 IEEE 24th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2018, DOI:
10.1109/RTCSA.2018.00026

[RPG+17] M. L. Raagaard, P. Pop, M. Gutiérrez, W. Steiner: Runtime
Reconfiguration of Time-Sensitive Networking (TSN) Schedules for Fog
Computing. In: Proceedings of the 2017 IEEE Fog World Congress (FWC),
Santa Clara, CA, 2017, DOI: 10.1109/FWC.2017.8368523

[SOL+23] T. Stüber , L. Osswald , S. Lindner, M. Menth: A Survey of Scheduling
Algorithms for the Time-Aware Shaper in Time-Sensitive Networking
(TSN), IEEE Access, 11, 2023, DOI: 10.1109/ACCESS.2023.3286370

[SPS+23] G. P. Sharma, D. Patel, J. Sachs, M. De Andrade, J. Farkas, J. Harmatos, B.
Varga, H. -P., Bernhard, R. Muzaffar, M. Ahmed, F. Dürr, D. Bruckner,
E.M. De Oca, D. Houatra, H. Zhang and J. Gross: Toward Deterministic
Communications in 6G Networks: State of the Art, Open Challenges and
the Way Forward, IEEE Access, vol. 11, pp. 106898-106923, 2023, DOI:
10.1109/ACCESS.2023.3316605

[W3C99-XPath] World Wide Web Consortium (W3C): XML Path Language (XPath),
Version 1.0, 1999

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 62

[ZSE+21] Y. Zhou, S. Samii, P. Eles, Z. Peng: Reliability-Aware Scheduling and
Routing for Messages in Time-Sensitive Networking. ACM Trans. Embed.
Comput. Syst., 20(5), May 2021, DOI: 10.1145/3458768

List of abbreviations
AGV Automated Guided Vehicle

BW Bandwidth

CNC Centralized Network Controller

CoAP Constrained Application Protocol

DetNet Deterministic Networking

DGM Disjunctive Graph Model

FIFO First in, first out

GCD Greatest Common Divisor

GCL Gate Control List

JSON Java Script Object Notation

KPI Key Performance Indicator

NETCONF Network Configuration Protocol

PD Packet Delay

PDC Packet Delay Correction

PDV Packet Delay Variation

PLC Programmable Logic Controller

PSFP Per-Stream Filtering and Policing

PTP Precision Time Protocol (IEEE 1588)

RPC Remote Procedure Call

QoS Quality of Service

RESTCONF Representational State Transfer Configuration

SOAP Simple Object Access Protocol

SSH Secure Shell

TCP Transmission Control Protocol

TLS Transport Layer Security

TSC Time-Sensitive Communication

TSN Time Sensitive Networking

VLAN Virtual LAN

XML eXtensible Markup Language

YANG Yet Another Next Generation

Table 1: List of abbreviations

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 63

Terms and Definitions
6GDetCom node A wireless TSN bridge using 6G technology for implementing the wireless

transmission.

Asynchronous Traffic
Shaper

A packet scheduling mechanism defined in the TSN standard IEEE
802.1Qcr.

Augmented Reality Presentation concept that combines physical (real) world and computer-
generated content.

Automated guided
vehicle

A vehicle automatically following a given path using sensors, e.g., on a
shop floor in a factory.

Automatic repeat
request

Protocol to control errors by automatically repeating erroneous and
dropped frames.

Bridge A layer 2 network element forwarding packets between network
segments in an Ethernet network.

Bridge delay See port-to-port delay.

Centralized Network
Controller

An entity of the network control plane that controls network elements
like bridges based on a global view onto the network.

Control plane Part of a network responsible for controlling the functions of the network
data plane, e.g., configuration of forwarding tables.

Cyber Physical System A system integrating (virtual) compute resources and physical entities like
physical machines on a shop floor or other physical objects.

Data plane Part of a network responsible for transporting data between source and
destination (packet forwarding).

Dependability In the context of real-time communication, dependability refers to the
ability of a system or software to consistently deliver the expected
functionality and performance while ensuring its correctness and
reliability. It encompasses several key attributes that are crucial for real-
time systems, including availability, reliability (see below), safety, fault
tolerance, timeliness, and predictability.

Deterministic
Networking

A standardization effort by the Internet Engineering Taskforce (IETF) to
enable communication with bounded loss, packet delay, packet delay
variation over layer 3 (routed) networks.

Earliest Deadline First Real-time scheduling strategy always selecting the queued item with the
earliest deadline for execution or forwarding.

Edge cloud A compute (server) infrastructure located close to the stations executing
applications to reduce latency between applications and services hosted
in the infrastructure and to increase the performance and efficiency of
clients, e.g., by offloading resource-intensive tasks to the edge cloud
servers.

EtherCat Real-time Ethernet technology.

Extended Reality Collective term for Augmented Reality (AR), Virtual Reality (VR), and
Mixed Reality (MR).

FIFO Scheduling strategy selecting the queued item next that has been waiting
the longest for execution or forwarding.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 64

Frame preemption A network mechanism to interrupt (preempt) lower-priority frames in
transmission by higher-priority frames and later resume the transmission
of the lower-priority frame, defined in TSN standard IEEE 802.1Qbu.

Frame replication Sending multiple copies (replicas) of a frame over different network paths
to increase reliability, defined in TSN standard IEEE 802.1CB.

Gate Mechanism in a TSN bridge to define which egress queues of a port are
eligible to forward packets.

Gate Control List Table defining when to open and close gates at a TSN bridge according to
a scheduling table.

Graceful degradation In the context of end-to-end scheduling: capability to maintain reduced
guarantees with respect to timeliness and reliability instead of steeply
dropping to no guarantees.

Jitter Variation in packet delay.

Listener TSN term for receiver or destination of packets.

Mixed Reality Systems combining physical (real) objects and computer-generated
objects.

Offloading Executing an application on a remote machine, often used with resource-
poor mobile devices that offload resource-intensive tasks to a server
infrastructure to increase efficiency.

Packet Delay Delay of a packet between two reference points such as starting the
transmission of a packet at the source station and receiving the packet at
a network element or end station (destination).

Packet Delay Variation Packet delay variation describes the amount of variation of the latencies
perceived when a series of messages is transmitted from a given sender
to a given receiver over a given network.

Packet Scheduling Function of the network data plane to decide when to forward queued
packets by bridges or routers.

Per-Stream Filtering
and Policing

Mechanisms defined in the TSN standard IEEE 802.1Qci for frame
counting, filtering, policing, and service class selection.

Port-to-port delay The delay that a packet experiences between the ingress port (packet
received by bridge) and egress port (packet transmitted bridge) of a
bridge.

Powerlink Real-time Ethernet technology.

Precision Time
Protocol

A network protocol and mechanisms to synchronize clocks at different
devices in a networked system, defined in the standard IEEE 802.1AS.

Priority Code Point The priority code point is a header field defining the priority of an
Ethernet frame by a number in the range from 0 to 7.

PROFINET A real-time Ethernet technology.

Programmable Logic
Controller

Device (computer) to automatically control a manufacturing process, e.g.,
robots or machines on a shop floor.

Radio Access Network A part of a mobile communication network providing access of end
stations like mobile phones to the core network using a radio technology.

Reliability Reliability describes the probability that a system will meet its expected
performance metrics and perform its intended functions consistently and
correctly over time.

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 65

Robust schedule A schedule that provides guarantees for uncertain parameters.

Software-Defined
Networking

An approach for network management based on concepts such as
logically centralized network management.

Southbound interface Interface between Centralized Network Controller and bridges in the
network control plane.

Talker TSN term for sender or source of packets.

Time-Aware Shaper A packet scheduling mechanism for traffic according to the TSN standard
IEEE 802.1Qbv (time-driven scheduling).

Time-Sensitive
Networking

Collective term for a set of standards by the Institute of Electrical and
Electronics Engineering (IEEE) for real-time communication over IEEE 802
networks.

Virtual LAN A logical (virtual) local-area network implemented atop a physical layer 2
network (Ethernet).

Virtual Reality Presentation concept that presents the user with computer generated
three-dimensional content.

Wireless by-pass By-passing several wireless links by a wireless network.

Table 2: Terms and Definitions

5 Appendix

5.1 YANG Data Model
The full YANG data model for modelling stochastic PD as histograms is shown below. The YANG

module can also be downloaded from Github6.

module port-to-port-delay {

 yang-version "1.1";

 namespace urn:det6g:port-to-port-delay;

 prefix det6g;

 import ieee802-types {

 prefix ieee802;

 }

 import ieee802-dot1q-types {

 prefix dot1qtypes;

 }

 import ieee802-dot1q-bridge {

 prefix dot1q-bridge;

 }

 organization DETERMINISTIC6G;

 contact "https://deterministic6g.eu/";

 description

6 https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/

https://github.com/DETERMINISTIC6G/deterministic6g_yang_models/

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 66

 "A YANG model for modelling stochastic port-to-port delay.";

 revision "2024-05-21" {

 description "Initial revision";

 reference "Deliverable D3.4 of DETERMINISTIC6G project";

 }

 grouping delay-histogram {

 description

 "Delay histogram";

 leaf start {

 type uint64;

 description

 "The start value of the first bin in nano-seconds.

 If not specified, the first bin starts at 0.";

 }

 leaf bin-count {

 type uint32;

 mandatory true;

 description

 "Number of bins.";

 }

 list bin {

 description

 "Bins of histogram.";

 key index;

 leaf index {

 type uint32;

 mandatory true;

 description

 "The index of this bin.";

 }

 leaf width {

 type uint64;

 mandatory true;

 description

 "The width of this bin in nano-seconds.";

 }

 leaf count {

 type uint32;

 mandatory true;

 description

 "Count of values in this bin.";

 }

 }

 leaf tail {

 type uint32;

 description

 "Count of values in the tail of the histogram

 after the upper bound of last bin until infinity.

 Can be used to define an unbounded distribution.";

 }

 }

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 67

 augment "/dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component" {

 container port-to-port-delays {

 config false;

 list port-to-port-delay {

 key "ingress-port egress-port traffic-class index";

 leaf ingress-port {

 type dot1qtypes:port-number-type;

 config false;

 mandatory true;

 description

 "Unique number of ingress port.";

 }

 leaf egress-port {

 type dot1qtypes:port-number-type;

 config false;

 mandatory true;

 description

 "Unique number of egress port.";

 }

 leaf traffic-class {

 type dot1qtypes:traffic-class-type;

 config false;

 mandatory true;

 description

 "Traffic class (0..7)";

 }

 leaf index {

 type uint16;

 config false;

 mandatory true;

 description

 "Index to define multiple histograms per

 port-pair and traffic class.";

 }

 uses delay-histogram;

 }

 leaf dependency-class {

 type enumeration {

 enum "independent";

 enum "dependent";

 }

 description

 "Are the given delays only applicable under

 certain conditions (e.g., for frames of

 certain length)?";

 }

 container validity-period {

 container valid-from {

 description

 "Given delays are only valid at or

 after this point in time, specified as

Document: Report on Optimized Deterministic End-to-End
Schedules for Dynamic Systems

 Version: v1.0
Date: 27-06-2024

Dissemination level: Public
Status: Final

101096504 DETERMINISTIC6G 68

 PTP timestamp.";

 uses ieee802:ptp-time-grouping;

 }

 container valid-until {

 description

 "Given delays are only valid until

 this point in time, specified as PTP

 timestamp.";

 uses ieee802:ptp-time-grouping;

 }

 }

 }

 }

 augment "/dot1q-bridge:bridges/dot1q-bridge:bridge/dot1q-

bridge:component/port-to-port-delays" {

 when "dependency-class = 'dependent'";

 container dependencies {

 container length-dependency {

 leaf min-frame-length {

 type uint32;

 description

 "Values apply only to frames equal or

 greater than this value.";

 }

 leaf max-frame-length {

 type uint32;

 description

 "Values apply only to frames equal or

 smaller than this value.";

 }

 }

 }

 }

}

