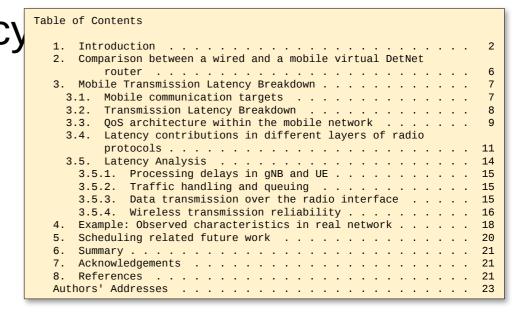


DetNet Latency Analysis of Mobile Transmission

draft-varga-detnet-mobile-latency-analysis

Balázs Varga, Joachim Sachs, Frank Dürr, Samie Mostafavi

DetNet WG


18th March, 2024, IETF 119

DetNet Latency Bound Analysis of Mobile Systems Latency

- Intended status:
 - Informational
- Actual version:
 - draft-varga-detnet-mobile-latency-analysis-00

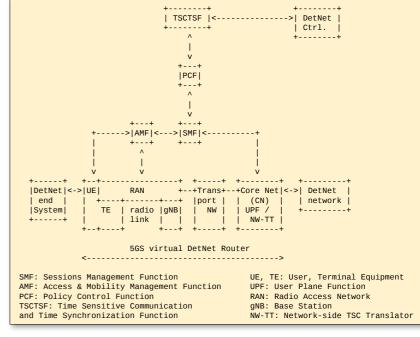
• Abstract:

• Dependable time-critical communication over a <u>mobile network</u> has its own <u>challenges</u>. This document focuses on a comprehensive <u>analysis</u> of mobile systems latency in order to incorporate its specifics in developments of latency specific network functions. The analysis provides valuable insights for the development of <u>wireless-friendly</u> methods ensuring bounded latency as well as future approaches using datadriven latency characterization.

Introduction Mobile Communication System

3GPP Releases:

Rel-16: Ultra-Reliable Low Latency Communications (URLLC)


Target: reliability, latency and QoS

 (e.g., automatic repetitions, antenna techniques, robust physical channels, Orthogonal Frequency Division Multiplex (OFDM) numerology, mini-slots, grant-free access, pre-emption, 5G QoS identifier (5QI) values for multiple time-critical services,

• Rel-18:

QoS monitoring).

- DetNet support: based on the concept developed for Time-sensitive Networking (TSN) in former releases.
- 5G system is represented in the end-to-end architecture as a set of virtual DetNet routers.
- Note: In general bridging/routing service is out-of-scope for 3GPP specifications

Comparison Wired vs. Wireless DetNet nodes

•5G network

- can form multiple virtual routers, each of which is realized via the UPF instance in the 5G core network.
- significant differences in the characteristics of a wired DetNet router and such a virtual DetNet node:
 - Physical distance of ports: decimeter vs. 100's of meters or even kms (+ reduced hop counts)
 - Number of ports: fixed vs. dynamic
 - Latency characteristics: microsecond vs. milliseconds
 - Dynamicity of characteristics: designed in advance vs. determined during operation phase (radio environment changes)

•Intent:

- able to efficiently ensure bounded latency in mixed (wired and wireless) DetNet scenarios
 - -- > wireless-friendly functions to ensure latency bound

Mobile Transmission Analysis Latency Breakdown

- In the 5G RAN the main latency contributors are:
 - 1. Time-domain reliability based on HARQ (Hybrid Automatic Repeat Request)
 - Latency, Robustness, Spectral efficiency
 - 2. Mobility with handover interruptions
 - Mobility is ensured by handover
 - 3. Time-division duplex structure
 - Various applicable configurations
 - 4. Congestion due to resource sharing and queuing
 - High load scenes
- Explained:
 - QoS architecture within the mobile network
 - Latency contributions in different layers of radio protocols

Example:

Observed characteristics in real network

• Packet delay distribution from a 5G system (OpenAirInterface 5G network)

+	Packet Delay 10 ms 15 ms 20 ms
Cumulative probability	99% 99.99% 99.999%
HARQ Re-transmission	0.01% 15% 45%
	27% 25% 10%
RAN Segmentation	43% 40% 30%
RAN Queuing Delay	29.99% 20% 15%

• In particular for high-reliability latency bounds (e.g. 99.999%) there is a substantial packet delay variation being introduced by a 5G system

Scheduling related future work Facing the real problems

- Scheduling:
 - provides bounds on queuing delay (BUT the node internal forwarding delay is another integral part of end-to-end delay).
- The node internal forwarding delay:
 - mobile virtual DetNet nodes cause a packet delay that is stochastic and heavy-tailed.
- Challenges for end-to-end scheduling
 - Clock-driven scheduling scenarios:
 - Bad reliability-efficiency trade-off
 - Higher complexity of scheduling problem formulation and solution
 - Other (non-clock-driven) scheduling mechanisms:
 - Higher complexity of end-to-end delay analysis

Summary & Next Steps

Summary

- Wireless communication provides flexibility and simplicity, but with inherently stochastic components that lead to packet delay distributions metrics exceeding significantly those found in wired counterparts.
- Some traffic shaping mechanisms, like time-scheduled transmission (i.e., IEEE 802.1Qbv), expect very deterministic latency behavior in every node on the transmissions path. The latency distribution of a 5G system makes it impracticable to implement some legacy time-schedule configurations.

Next Steps

- Comments / views are welcome
- Discussion on wireless-friendly latency solutions

Thanks ...

