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Executive summary 
This digest gives an overview of the open-source software released as deliverable D4.1 DetCom 

Simulator Framework Release 1. It describes the main features of the simulator software, which is 

based on the OMNeT++1/INET simulation framework2 and the design rationales behind these features. 

It is not meant as a programmer’s or user’s guide, but provides pointers to the open-source code 

repository found at Github and (as snapshot) at the Zenodo platform (see links in Table 1). 

The core features implemented for the first software release of the simulator are simulation models 

to simulate the characteristic stochastic Packet Delay (PD) in the network data plane – in particular, 

for 6GDetCom nodes implementing wireless Time Sensitive Networking (TSN) bridges – and Processing 

Delay for applications and services hosted in an edge cloud computing infrastructure. Large Packet 

Delay Variation (PDV) – larger than in wired network infrastructures such as wired TSN networks – is 

a typical property of wireless networks, which directly impacts real-time communication mechanisms. 

In particular, time-driven scheduling mechanisms such as the Time-Aware Shaper (IEEE 802.1Qbv 

[IEEE15-8021Qbv]) are directly impacted by PDV. Therefore, novel algorithms to calculate robust 

schedules or novel scheduling mechanism are required that are able to deal with stochastic delay 

distributions. These novel scheduling approaches then need to be validated with respect to their 

ability to deal with stochastic delay and compared against existing mechanisms. Also processing delay 

may vary significantly in a virtualized cloud-hosted environment executing software in virtual 

machines or containers. Therefore, being able to simulate these delays is essential for validating the 

performance – e.g., in terms of max. latency guarantees or number of streams that can be 

accommodated in the network – of such mechanisms under delay variation and for developing the 

concepts proposed in this project to improve this performance. The approach chosen for simulating 

PD distributions and processing delay is generic in the sense that any delay distribution can be 

simulated through specifying closed formulas (probability distributions), directly integrating data sets 

(histograms), or algorithmically by implementing stochastic processes, allowing also for correlated 

delay. In particular, data sets measured in a 5G testbed as part of the project can be integrated. The 

simulation models for PD have been integrated into the existing INET simulation models for TSN 

bridges; processing delay simulation has been integrated into simulated application components in 

INET. Exemplary PD and processing delay data sets for wired and wireless bridges and edge cloud 

applications are also briefly introduced in this document and released together with the software. 

Moreover, an initial set of validation scenarios implemented for the simulator are described in this 

document, including a baseline scenario, an industrial use case scenario, and a scenario for evaluating 

time synchronization under PDV.  

       

  

                                                           
1 OMNeT++ Discrete Event Simulator (omnetpp.org) 
2 INET Framework - INET Framework (omnetpp.org) 

https://omnetpp.org/
https://inet.omnetpp.org/
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1 Introduction 
This document gives an overview of the simulator software released as deliverable D4.1 DetCom 

Simulator Framework Release 1. Note that the type of D4.1 is an open-source software (not primarily 

a report). This digest accompanies the software release to provide an easy-to-read overview of the 

features implemented in D4.1, their general design, and the design rationales. This helps readers who 

are not proficient in software development and the simulator framework to understand the 

contributions of the deliverable. It is not meant as programmer’s guide or user’s guide and does, 

therefore, not provide exhaustive documentation of the software, nor instructions how to use this 

software. The essential content of the deliverable is the software (code) and the software artefacts 

(software documentation including class and showcase descriptions, configuration files, executable 

container images, etc.), which can be found at the project’s public Github repository and as a snapshot 

of this repository at the Zenodo platform. Links to the software and data sets are provided in Table 1.  

Component name License Link 

Simulator Framework LGPL v3 GitHub: 
DETERMINISTIC6G/deterministic6g 

Zenodo DOI: 
10.5281/zenodo.10401977 

PD 
Datasets 
(see Sec. 

2.2.3) 

PD-Wired CC BY-
SA 4.0 

GitHub: 
deterministic6g_data/PD-Wired 

Zenodo DOI: 
10.5281/zenodo.10405085 

PD-Wireless-5G-
1 

CC BY 
4.0 

GitHub: 
deterministic6g_data/PD-Wireless-5G-1 

Zenodo DOI: 
10.5281/zenodo.10390211 

PD-Wireless-5G-
2a 

CC BY-
ND 4.0 

GitHub: 
deterministic6g_data/PD-Wireless-5G-2a 

Zenodo DOI: 
10.5281/zenodo.10405085 

PD-Wireless-5G-
3a 

CC BY-
ND 4.0 

GitHub: 
deterministic6g_data/PD-Wireless-5G-3a 

Zenodo DOI: 
10.5281/zenodo.10405085 

Processing 
Delay 

Datasets 
(see Sec. 

4.3) 

ProcessingDelay
Distribution1 

CC BY-
ND 4.0 

GitHub: 
deterministic6g_data/ProcessingDelayDistribution1 

Zenodo DOI: 
10.5281/zenodo.10405085 

ProcessingDelay
Distribution2 

CC BY-
ND 4.0 

GitHub: 
deterministic6g_data/ProcessingDelayDistribution2 

Zenodo DOI: 
10.5281/zenodo.10405085 

Table 1: Overview over subcomponents of this deliverable. 

This digest provides, where appropriate, links to the software (code), software documentation, and 

instructions (e.g., README files) that are part of the repository to facilitate navigation to the relevant 

parts of the repository. More detailed technical information about the implementation can be found 

at these places in the repository.  

https://www.gnu.org/licenses/lgpl-3.0.de.html
https://github.com/DETERMINISTIC6G/deterministic6g
https://doi.org/10.5281/zenodo.10401977
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/DETERMINISTIC6G/deterministic6g_data/tree/main/PD-Wired
https://doi.org/10.5281/zenodo.10405085
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/DETERMINISTIC6G/deterministic6g_data/tree/main/PD-Wireless-5G-1
https://doi.org/10.5281/zenodo.10390211
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/DETERMINISTIC6G/deterministic6g_data/tree/main/PD-Wireless-5G-2a
https://doi.org/10.5281/zenodo.10405085
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/DETERMINISTIC6G/deterministic6g_data/tree/main/PD-Wireless-5G-3a
https://doi.org/10.5281/zenodo.10405085
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/DETERMINISTIC6G/deterministic6g_data/tree/main/ProcessingDelayDistribution1
https://doi.org/10.5281/zenodo.10405085
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/DETERMINISTIC6G/deterministic6g_data/tree/main/ProcessingDelayDistribution2
https://doi.org/10.5281/zenodo.10405085
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The software described here is based on the OMNeT++ simulator [OMN23] and the INET framework 

[INE23] for network simulation, which are both available as open-source software. Both come with 

extensive documentation, which is not replicated here. However, where necessary, we provide 

sufficient information to keep this document self-contained and refer to the detailed information 

available on the OMNeT++/INET web pages. 

For readers who are not familiar with the DETERMINISTIC6G project, we start with a brief general 

overview of the project to keep this document self-contained and set the stage for the validation 

framework. Readers who already know the DETERMINISTIC6G project could skip this sub-section and 

directly start with Section 1.2 motivating the need for the validation framework and describing its 

purpose. Afterwards, we described the relation to other work packages of the project, before giving 

an overview of the remainder of this document.    

1.1 Scope of the Project: The Deterministic6G Approach 
Digital transformation of industries and society is resulting in the emergence of a larger family of time-

critical services with needs for high availability and which present unique requirements distinct from 

traditional Internet applications like video streaming or web browsing. Time-critical services are 

already known in industrial automation; for example, an industrial control application that might 

require an end-to-end “over the loop” (i.e., from the sensor to the controller back to the actuator) 

latency of 2 ms and with a communication service requirement of 99.9999 % [3GPP16-22261]. But 

with the increasing digitalization similar requirements are appearing in a growing number of new 

application domains, such as extended reality, autonomous vehicles and adaptive manufacturing. The 

general long-term trend of digitalization leads towards a Cyber-Physical Continuum where the 

monitoring, control and maintenance functionality is moved from physical objects (like a robot, a 

machine or a tablet device) to a compute platform at some other location, where a digital 

representation – or digital twin – of the object is operated. Such Cyber Physical System (CPS) 

applications need a frequent and consistent information exchange between the digital and physical 

twins. Several technology developments in the ICT-sector drive this transition. The proliferation of 

(edge-) cloud compute paradigms provide new cost-efficient and scalable computing capabilities, that 

are often more efficient to maintain and evolve compared to embedded compute solutions integrated 

into the physical objects. It also enables the creation of digital twins as a tool for advanced monitoring, 

prediction and automation of system components and improved coordination of systems of systems. 

New techniques based on Machine Learning can be applied in application design, that can operate 

over large data sets and profit from scalable compute infrastructure. Offloading compute functionality 

can also reduce spatial footprint, weight, cost and energy consumption of physical objects, which is in 

particular important for mobile components, like vehicles, mobile robots, or wearable devices. This 

approach leads to an increasing need for communication between physical and digital objects, and 

this communication can span over multiple communication and computational domains. 

Communication in this cyber-physical world often includes closed-loop control interactions which can 

have stringent end-to-end KPI (e.g., minimum and maximum packet delay) requirements over the 

entire loop. In addition, many operations may have high criticality, such as business-critical tasks or 

even safety relevant operations. Therefore, it is required to provide dependable time-critical 

communication which provides communication service-assurance to achieve the agreed service 

requirements.  

Time-critical communication has in the past been mainly prevalent in industrial automation scenarios 

with special compute hardware like Programmable Logic Controller (PLC), and is based on a wired 
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communication system, such as EtherCat and Powerlink, which is limited to local and isolated network 

domains which is configured to the specific purpose of the local applications. With the standardization 

of Time-Sensitive Networking (TSN), and Deterministic Networking (DetNet), similar capabilities are 

being introduced into the Ethernet and IP networking technologies, which thereby provide a 

converged multi-service network allowing time critical applications in a managed network 

infrastructure allowing for consistent performance with zero packet loss and guaranteed low and 

bounded latency. The underlying principles are that the network elements (i.e. bridges or routers) and 

the PLCs can provide a consistent and known performance with negligible stochastic variation, which 

allows to manage the network configuration to the needs of time-critical applications with known 

traffic characteristics and requirements.  

It turns out that several elements in the digitalization journey introduce characteristics that deviate 

from the assumptions that are considered as baseline in the planning of deterministic networks. There 

is often an assumption for compute and communication elements, and also applications, that any 

stochastic behavior can be minimized such that the time characteristics of the element can be clearly 

associated with tight minimum/maximum bounds. Cloud computing provides efficient scalable 

compute, but introduces uncertainty in execution times; wireless communications provides flexibility 

and simplicity, but with inherently stochastic components that lead to packet delay variations 

exceeding significantly those found in wired counterparts; and applications embrace novel 

technologies (e.g. ML-based or machine-vision-based control) where the traffic characteristics deviate 

from the strictly deterministic behavior of old-school control. In addition, there will be an increase in 

dynamic behavior where characteristics of applications, and network or compute elements may 

change over time in contrast to a static behavior that does not change during runtime.  It turns out 

that these deviations of stochastic characteristics make traditional approaches to planning and 

configuration of end-to-end time-critical communication networks such as TSN or DetNet, fall short in 

their performance regarding service performance, scalability and efficiency. Instead, a revolutionary 

approach to the design, planning and operation of time-critical networks is needed that fully embraces 

the variability but also dynamic changes that come at the side of introducing wireless connectivity, 

cloud compute and application innovation. DETERMINISTIC6G has as objective to address these 

challenges, including the planning of resource allocation for diverse time-critical services end-to-end 

over multiple domains, providing efficient resource usage and a scalable solution [SPS+23]. 

DETERMINISTIC6G takes a novel approach towards converged future infrastructures for scalable 

cyber-physical systems deployment. With respect to networked infrastructures, DETERMINISTIC6G 

advocates (I) the acceptance and integration of stochastic elements (like wireless links and 

computational elements) with respect to their stochastic behavior captured through either short-term 

or longer-term envelopes. Monitoring and prediction of KPIs, for instance latency or reliability, can be 

leveraged to make individual elements plannable despite a remaining stochastic variance. 

Nevertheless, system enhancements to mitigate stochastic variances in communication and compute 

elements are also developed. (II) Next, DETERMINISTIC6G attempts the management of the entire 

end-to-end interaction loop (e.g. the control loop) with the underlying stochastic characteristics, 

especially embracing the integration of compute elements. (III) Finally, due to unavoidable stochastic 

degradations of individual elements, DETERMINISTIC6G advocates allowing for adaptation between 

applications running on top such converged and managed network infrastructures. The idea is to 

introduce flexibility in the application operation such that its requirements can be adjusted at runtime 

based on prevailing system conditions. This encompasses a larger set of application requirements that 
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(a) can also accept stochastic end-to-end KPIs, and (b) that possibly can adapt end-to-end KPI 

requirements at run-time in harmonization with the networked infrastructure. DETERMINISTIC6G 

builds on a notion of time-awareness, by ensuring accurate and reliable time synchronicity while also 

ensuring security-by-design for such dependable time-critical communications. Generally, we extend 

a notion of deterministic communication (where all behavior of network and compute nodes and 

applications is pre-determined) towards dependable time-critical communication, where the focus is 

on ensuring that the communication (and compute) characteristics are managed in order to provide 

the KPIs and reliability levels that are required by the application. DETERMINISTIC6G facilitates 

architectures and algorithms for scalable and converged future network infrastructures that enable 

dependable time-critical communication end-to-end, across domains and including 6G. 

It is critical to validate the effectiveness and efficiency of the concept for dependable time-critical 

communication mentioned above. The validation framework presented in this report serves as the 

main tool for this validation. Next, we describe this purpose of the validation framework within the 

DETERMINSTIC6G project in more detail. 

1.2 Purpose of the Validation Framework 
The primary purpose of the validation framework is to facilitate the validation of the concepts and 

mechanisms developed as part of other work packages of the DETERMINISTIC6G project through 

simulations. The novel concepts and mechanisms of the DETERMINISTIC6G project mentioned above 

are translated to simulation models, which are then used in scenarios based on use cases of time-

critical communication for a quantitative evaluation. 

In particular, the characteristic stochastic delay of communication over wireless links is simulated and 

its impact onto time-dependent mechanisms such as time-driven packet scheduling and time 

synchronization is evaluated. To realistically simulate network delay, we follow a data-driven 

approach, where delay models are based on measurements from real system such as a 5G 

experimental testbed. Moreover, we also consider the delay induced by edge cloud components to 

assess the mentioned end-to-end KPIs, which include network delay as well as processing delay “on 

the edge”.       

1.3 Relation to other Work Packages 
As already mentioned, the simulation models of the validation framework developed in WP4 are 

based on the concepts and mechanisms WP 2 6G Centric Enablers for Deterministic Communication 

and WP 3 Enablers of 6G Convergence for Deterministic Communication; the implemented validation 

scenarios are related to the use cases defined in WP 1 Vision, Architecture and System aspects for 

Deterministic E2E Communication with 6G. Figure 1 depicts the embedding of WP4 into the project. 
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Figure 1: Relation of WP4 to other work packages 

WP1, WP2, and WP3 have also released reports describing the concepts behind the implementation 

in more detail. Therefore, although this report tries to provide sufficient information to keep the 

document self-contained and readable, we refer to the reports of the other deliverables for in-depth 

information about the fundamental concepts and use cases implemented here: 

• D1.1: DETERMINISTIC6G Use Cases and Architecture Principles [DET23-11] 

• D2.1: 6G Centric Enablers [DET23-21] 

• D2.2: Time Synchronization for E2E Time Awareness [DET23-22] 

• D3.1: 6G Convergence Enablers Towards Deterministic Communication Standards  

[DET23-31] 

Please also note that, although the purpose of the software is to validate the concepts developed in 

the project, the validation results are subject to another upcoming deliverable D4.5 Validation Results. 

Thus, validation results presented as part of this report are preliminary. 

Moreover, a second release of the simulator framework will follow at the end of the project, thus, the 

design of the first release will be extended and possibly adapted at some places, where necessary.  

1.4 Structure of the Document 
The remainder of this digest is structured as follows: 

In Section 2, we present simulation models for the network data plane where the forwarding of 

packets takes place. Here, we focus on the essential concept for simulating wireless 6G networks 

together with wired TSN networking infrastructures: PD distributions with high PDV. PDV has direct 

impact onto time-driven scheduling mechanisms such as the Time-Aware Shaper (TAS) defined in IEEE 

802.1Qbv [IEEE15-8021Qbv] or time synchronization. The realistic simulation of PD distributions 

allows for the evaluation of this impact, and, therefore, is the central concept of the simulation 

framework with respect to the realistic simulation of the wired/wireless data plane.  
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In Section 3, we present the current implementation of the network control plane used to configure 

data plane mechanisms in the simulator. Since the focus of the first release is on the data plane 

mechanisms, only a rudimentary control plane implementation is presented here.  

In Section 4, we focus on simulation models for the edge cloud infrastructure. In concert with the PDV 

concept for packet delay distributions, we also model the delay of edge cloud components as 

processing delay distributions in the simulator. 

In Section 5, we describe the implementation of several validation scenarios for the simulator, which 

use the other concepts such as simulation of PD and processing delay. Currently, these scenarios aim 

at evaluating the impact of PDV onto end-to-end scheduling and the performance of time 

synchronization. 

Finally, we conclude this report in Section 6 with a brief summary and outlook onto future work.  

2 Simulation Models for the Network Data Plane 
In this section, we describe the essential simulation models of the network data plane. The network 

data plane is responsible for forwarding packets according to the configuration made by the network 

control plane in terms of where to forward packets (e.g., over which egress port of a bridge), and when 

to forward packets (packet scheduling or shaping in TSN terminology). To this end, the control plane 

is configuring the forwarding tables and scheduling mechanisms, such as the gate control lists 

(timetables) of time-aware egress ports of TSN bridges, and the data plane is executing the forwarding 

and scheduling as configured by the control plane. 

The data plane can contain wired and wireless network elements. The simulation framework is 

focused on dependable time-sensitive communication in TSN, i.e., the typical network elements are 

wired and wireless TSN bridges. We also call wireless TSN bridges 6GDetCom3 nodes, which are the 

major novel components in our simulation framework since they encompass wireless links with very 

specific timing characteristics that are fundamentally different from wired TSN bridges. Since most 

end-to-end communication that we consider in this project passes through at least one 6GDetCom 

node at some point along the end-to-end path, the design and implementation of 6GDetCom nodes 

is the first and foremost component in our first software release, and, therefore, will be described in 

more detail in Section 2.2, after briefly introducing the already existing basis for this component: the 

simulation model of the standard wired TSN bridge (Section 2.1).  

2.1 Starting Point: Existing TSN Simulation Models 
The 6GDetCom node is an extension of the simulation model of a TSN bridge implemented by the INET 

framework. Besides the standard forwarding mechanisms of an IEEE 802.1Q bridge, the 6GDetCom 

node inherits the TSN shaping mechanisms for traffic scheduling. To keep this document self-

contained, we first briefly summarize the TSN data plane mechanisms already implemented by the 

INET framework, before we present the specific extensions of the 6GDetCom node for wireless 

communication. 

                                                           
3 In this document, we always use the term 6G when referring to mobile networks, although some concepts 

and implementations might also be applicable to existing 5G networks. 
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INET offers a rich set of TSN standard implementations in version 4.5.2 (at the time of publishing this 

document), including but not limited to: 

• IEEE 802.1Qbv Enhancements for Scheduled Traffic [IEEE15-8021Qbv]: time-aware shaping 

with gating mechanism at egress queues 

• IEEE 802.1Qav Forwarding and Queuing Enhancements for Time-Sensitive Streams [IEEE09-

8021Qav]: credit-based shaping with send slopes and idle slopes 

• IEEE 802.1Qcr Asynchronous Traffic Shaping [IEEE20-8021Qcr]: asynchronous traffic shaping 

with per-class queuing and per-stream reshaping 

• IEEE 802.1Qci Per-Stream Filtering and Policing [IEEE17-8021Qci]: per stream filtering and 

policing 

• IEEE 802.1CB Frame Replication and Elimination for Reliability [IEEE17-8021CB]: frame 

replication and elimination mechanism to send replicated frames over different paths to 

increase reliability 

• IEEE 802.1Qbu Frame Preemption [IEEE16-8021Qbu]: preemption of low-priority frames in 

transmission by high-priority (express) frames   

• IEEE 802.1AS Timing and Synchronization for Time-Sensitive Applications [IEEE11-8021AS]: 

gPTP for time synchronization; drifting oscillators; multiple clocks for multiple time domains 

In the first release, we utilize the TAS (IEEE 802.1Qbv Enhancements for Scheduled Traffic) 

implementing a time-driven scheduling mechanism, since such time-driven mechanisms are directly 

impacted by PDV. The TAS relies on timetables (so-called gate control lists (GCL)) driving so-called 

gates behind each egress queue of TSN bridges. If a gate is open, frames from this queue might be 

transmit; if a gate is closed, the queue is not eligible for transmission. GCLs are configured by the so-

called Centralized Network Controller (CNC) (in the fully centralized TSN model) to open and close 

gates at specific points in time according to a schedule. To calculate such schedules automatically, 

specific algorithms are used that consider the timing constraints of streams such as their bounds on 

end-to-end network delay. This time-driven mechanism has obvious dependencies on PDV, making it 

a primary target, for instance to evaluate robust time-driven schedules that can deal with PDV, 

although later we might also consider other shaping mechanisms. 

Figure 2 shows the internal architecture of a TSN bridge with two egress queues as implemented by 

INET in the simulator. Most interesting with respect to the TAS is the MAC layer of the Ethernet 

interface (cf., eth[0] in the green box at the bottom left of the figure). The internal components of the 

MAC layer (yellow box) show the egress queue component of the Ethernet interface, whose internal 

components are shown in the blue box. In the blue box, we can see the individual egress queues for 

the interface as well as the classifier, which enqueues packets in the queue corresponding to the 

packet’s priority to traffic class mapping. The figure also shows the transmission gates of the TAS 

behind each queue.  

We refine this architecture in Section 2.2.2 to add the characteristic PD distributions of wireless 

6GDetCom nodes to the TSN data path.  
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Figure 2: Internal architecture of a TSN bridge in INET. 

2.2 Simulating Packet Delay Variation in the TSN Data Plane 
The delay of a packet while passing through a 6GDetCom node from ingress to egress port is 

qualitatively and quantitatively different from the delay of a wired TSN bridge.  Therefore, the accurate 

simulation of the characteristic PD of wired and wireless TSN bridges is essential for evaluating the 

performance of TSN shaping mechanisms, algorithms for calculating “wireless-friendly” IEEE 802.1Qbv 

schedules (cf. Section 4 of D3.1: 6G Convergence Enablers Towards Deterministic Communication 

Standards [DET23-D31]), time synchronization mechanisms (cf. D2.2: Time Synchronization for E2E 

Time Awareness [DET23-D22]), etc.  

Next, we present our simulation models for simulating stochastic PD in 6GDetCom nodes. 

2.2.1 Alternative Approaches and Design Rationale 
First of all, simulation models are, according to the model theory of Stachowiak [S73], pragmatic 

abstractions of another object. Abstraction means that the model will not simulate all functions and 

properties of the abstracted object. Pragmatic means that the model must – despite being an 

abstraction – be fit for a given purpose, in our case, for validating the developed concepts and 

evaluating performance realistically. Obviously, there is no single approach to model a 6GDetCom 

node. Next, we compare two alternative approaches, select one, and explain the design rationale of 

our decision.  

With respect to functional requirements, our 6GDetCom node must simulate the TSN mechanisms 

already listed in Section 2.1 since 5G and 6G nodes should at their “boundaries” behave like a wireless 

TSN bridge (cf. architecture described in [DET23-D11]).  
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With respect to non-functional requirements, packets inside the 6GDetCom node should be delayed 

with a characteristic delay distribution.  

Two fundamental approaches exist to tackle the second requirement of simulating characteristic PDs:  

1. A fine-grained simulation model of all layers of the network stack and influencing factors of 

the environment. In particular, this includes the physical layer and environment, which leads 

to effects like shadowing, slow and fast fading, diffraction, interference, but also protocol 

details such as multiplexed media access, automatic repeat requests, etc.  

2. A coarse-grained simulation model integrating stochastic delay distributions in a form that 

can be evaluated by the simulator at simulation time to pick delays for packets to be 

forwarded from the given PD distributions.  

The first approach is characterized by a low level of abstraction and consequently high complexity with 

respect to the very detailed implementation and simulation runtime. This problem can be alleviated 

by using an existing simulator for 5G systems such as Simu5G [NSS+20]. However, it is unclear 

(corresponding to a higher risk) (a) whether the resulting delay is accurate, i.e., whether the simulation 

model is indeed sufficiently fine-grained; (b) what the complexity of integrating various TSN 

mechanisms from INET is, which has not been a focus of Simu5G so far.  

The second approach is characterized by a high level of abstraction – at least with respect to simulating 

wireless communication – and relies on realistic data such as measurements taken in real systems. 

The already reduced complexity of this approach can be further reduced by basing the implementation 

on the existing TSN-ready INET components (existing TSN bridge simulation model shown in Fig. 1).  

We decided to implement the second approach using stochastic PD distributions in the simulator for 

the following reasons: 

• Feasible complexity of implementation (feasible within the given project runtime). 

• Availability of empirical data (Task 4.3 Data-driven Analysis for RAN Latency Inference).  

• Higher flexibility by being able to “plug-in” any PD distribution (based on real measurements 

or artificial).  

• Introducing and then simulating new wireless functions or enhancements is not the primary 

target. We rather simulate the effects on PD and the impact of PD onto TSN mechanisms and 

end-to-end performance.    

The concrete delay distribution to be simulated is outside the scope of this deliverable, and subject to 

an upcoming deliverable D4.3 Latency Measurement Data and Characterization of RAN Latency from 

Experimental Trials. However, in this report we will show some examples or preliminary delay 

distributions and include them in the software repository.  

Moreover, our implementation of stochastic packet delays is generic and extensible, enabling the 

specification of closed-form stochastic distributions (e.g., a normal distribution and its parameters), 

direct integration of data sets (histograms) stemming from measurements, or algorithms evaluated at 

simulation time to implement random processes (e.g., random walks). This allows for implementing 

independent and correlated packet delays, the parameters of which can also be dynamically adapted 

at simulation time using, for instance, the Scenario Manager feature of INET.  



 

Document: Digest on 1st DetCom Simulator Framework Release 

 
Version: 1.0 
Date: 19-12-2023 

Dissemination level: Public 
Status: Final  

 

 

 

 

2.2.2 Design and Implementation of 6GDetComNode with Packet Delayer 
The design of our 6GDetCom node is based on the wired TSN bridge component of INET such that it 

inherits all functions of a TSN bridge. The main missing part in the original TSN bridge design is the 

simulation of the characteristic stochastic PD of the wireless links of the 6GDetCom node when 

packets pass from UE to the RAN user plane (cf. Figure 3).  

 

Figure 3: 6GDetCom node with two devices on the left connected through wireless links of a 6GDetCom node 

to wired TSN network segment on the right. 

To add the characteristic PD, PDs are simulated by a subcomponent within the 6GDetCom node called 

Delayer. Note that the term Delayer is a term coined by the INET framework, which already provides 

hooks in its Ethernet bridge model implementation to add delay to packets passing through the bridge 

by adding Delayer components to the data path. Every packet that is transmitted from or to a UE 

passes through a Delayer component. 

Figure 4 shows the structure of the 6GDetCom node based on the TsnSwitch4 component of INET in 

more detail. Within the 6GDetCom node, the delay is added by a subcomponent called 

PairwiseDelayer5(orange oval) within the so-called bridging layer (green circle). The PairwiseDelayer 

is a specific delayer component that can add individual delays per port pair and individually for 

upstream and downstream directions. Additionally, the 6GDetCom node implements a new UE 

interface type that allows for the transmission of packets without any additional simulated 

propagation and transmission delays since these are already part of the PD. In this module, packets 

arrive at one of the interfaces (i.e., eth[0], ue[0] or ue[1]) and traverse up to the bridging layer. This 

layer is responsible for defining the packet processing, e.g., identification of streams and ingress 

packet filtering. The directionReverser component then determines whether the packet shall be 

received by an internal application on the bridge (there is none in this example) or be forwarded to 

one or multiple egress interfaces. Within the bridging layer the packet then passes downwards 

through components, which for example determine the Priority Code Point (PCP) value and VID of the 

frame. It then reaches the proposed PairwiseDelayer component, which determines the delay to be 

                                                           
4 TsnSwitch (omnetpp.org) 
5 PairwiseDelayer (deterministic6g.github.io) 

https://doc.omnetpp.org/inet/api-current/neddoc/inet.node.tsn.TsnSwitch.html
https://deterministic6g.github.io/deterministic6g/doc/neddoc/d6g.delayer.PairwiseDelayer.html
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added based on the incoming and outgoing interface. Finally, it arrives at its outgoing interface, which 

applies the configured TSN scheduling mechanisms, e.g., the TAS. 

 

 

Figure 4: Structure of 6GDetCom node and the PairwiseDelayer component as part of the bridging layer. 

PairwiseDelayer 

In contrast to the capabilities of the standard INET delayer, the design of our PairwiseDelayer5 

component allows for specifying delays based on the incoming and outgoing ports of the 6GDetCom 

node, i.e., individually in upstream and downstream direction for any port pair. Listing 1 shows an 

example configuration file for the network depicted in Figure 3. 

<delays> 
    <delay in="deviceA" out="bridge">rngProvider("histogramUplink")</delay> 
    <delay in="bridge" out="deviceA">rngProvider("histogramDownlink")</delay> 
    <delay out="bridge">rngProvider("histogramFallback”)</delay> 
    <delay>normal(5ms,2ms)</delay> 
</delays>  

Listing 1: Example PairwiseDelayer configuration file. 

The definition of delays can either be a custom Network Description (NED) function (e.g., to implement 

a stochastic process or any other “algorithmic” definition of delay, or to pick delays based on a 

histogram data set), an OMNeT++ built-in statistical distribution (closed-form probability distribution), 

a mathematical expression (e.g., 1 𝑚𝑠 + 1 𝑛𝑠), or an arbitrary combination of the aforementioned 

options. 

With the provided example configuration file, a packet sent from deviceA to bridge calls the provided 

rngProvider() function with histogramUplink as a parameter, which then returns a delay. The 

PairwiseDelayer allows to configure fallback options, e.g., a packet sent from deviceB to bridge would 

use the histogramFallback, while for any other packets the provided normal distribution applies. 
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The rngProvider() function accepts the identifier of another OMNeT++ component that implements 

our IRandomNumberProvider interface as function argument. In this first release of our simulation 

framework, this is the Histogram6 module, as described in the next sub-section. 

Histogram 

OMNeT++ already provides built-in functions to pick random numbers from closed-form probability 

distributions, e.g., from a normal distribution or a uniform distribution. However, in some cases it 

might be desirable to simulate delays directly based on empirical data sets (measurements) available 

as histograms without fitting a function first. To this end, our simulation framework contains a 

Histogram6 component, which can generate random numbers based on any kind of histogram in XML 

format. Listing 2 shows an example configuration file that corresponds to the histogram shown in 

Figure 5. 

 

Figure 5: Example histogram 

<histogram> 
    <bin low="1ms">1</bin> 
    <bin low="2ms">4</bin> 
    <bin low="3ms">3</bin> 
    <bin low="4ms">0</bin> 
</histogram>  

Listing 2: Example Histogram configuration file. 

Each bin element covers a time interval ranging from value low to the low value of the next bin element 

and defines its value count as content of the element. The last element is only needed to define the 

upper bound of the last (previous) bin, and therefore, its count is always zero. 

Note that these histograms can only model independent and identically (i.i.d.) distributed random 

delay variables. In particular, no correlation between delays can be modeled. Although we can model 

such correlated delays through stochastic process models, it is so far not possible in our framework to 

                                                           
6 Histogram (deterministic6g.github.io) 

https://deterministic6g.github.io/deterministic6g/doc/neddoc/d6g.distribution.histogram.Histogram.html
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directly integrate delay data while preserving the correlation between delays. This will be subject to 

future work.      

2.2.3 Exemplary PD Models 
The PairwiseDelayer requires closed-form formulas, data sets, or algorithms describing random 

processes to model PDVs. Please note that the following descriptions are not meant as detailed 

instructions for programmers on how to use the provided data sets in the simulator. Such instructions 

are provided as README files together with the data set in the repository. The following descriptions 

should provide information about what was measured and how to interpret the data. We provide the 

following PDVs as part of D4.1 (links to the datasets are provided in Table 1): 

• PD-Wired (data set): PDV of a wired TSN bridge measured with a commercial TSN bridge. A 

description of how PD-Wired was measured can be found in the next section. 

• PD-Wireless-5G-1 (data set): PD of wireless TSN bridge based on measurements from a 5G 

testbed as part of Task 4.3 Data-driven Analysis for RAN Latency Inference. Please note that 

this PD is preliminary. Final PDs will be part of deliverable D4.3 Latency Measurement Data 

and Characterization of RAN Latency from Experimental Trials, which is due later in month 

24. Information on how PD-Wireless-5G-1 was measured is documented in [MSG23]. 

• PD-Wireless-5G-2a (data set): PD of a wireless TSN bridge based on measurements from a 5G 

testbed in an industrial research shopfloor, which were made in collaboration with the 

Fraunhofer Institute for Production Technology. The 5G testbed corresponds to a 5G 

standalone trial network with 100 MHz carrier bandwidth operating in the 3.7 GHz band. It is 

deployed at the 5G Industry Campus Europe in Aachen Germany7. The network setup and the 

measurement methodology are further described in [AAB+22]. Two histogram data sets are 

derived from measurements in the trial network, one measurement for downlink (from a 

controller to a mobile device over the 5G network, see Figure 6) and one measurement for 

uplink (from the mobile device over 5G to the controller, see Figure 7). The measurements 

are made for periodic PROFINET messages of 100 bytes size that are transmitted every 10 ms. 

                                                           
7 https://5g-industry-campus.com/  

https://5g-industry-campus.com/
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Figure 6: Histogram of downlink packet delay of the data set PD-Wireless-5G-2a based on measurements in a 

5G trial network on a research production shopfloor. 

 

Figure 7: Histogram of uplink packet delay of the data set PD-Wireless-5G-2a based on measurements in a 5G 

trial network. 

The data set is contributed with the objective to keep the quality of the data intact, which 

prohibits modification and further sharing of the data. 

• PD-Wireless-5G-2b (closed formula): Closed form approximation of the data set PD-Wireless-

5G-2a from a 5G trial network in an industrial research shopfloor as described above (see also 

[AAB+22]). The PDV is expressed as normal distributions that has been fitted to the histogram 

values 

o Downlink 

▪ Normal distribution (in units: ms) 

▪ Mean: 𝜇 = 5.69452 

min max

min max
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▪ Standard deviation: 𝜎 = 1.5062 

o Uplink 

▪ Normal distribution (in units: ms) 

▪ Mean: 𝜇 = 6.52078 

▪ Standard deviation: 𝜎 = 1.00279 

• PD-Wireless-5G-3a (data set): PD of a wireless TSN bridge based on measurements from a 5G 

testbed in an industrial research shopfloor, which were made in collaboration with the 

Fraunhofer Institute for Production Technology. The 5G testbed corresponds to a pre-

commercial 5G URLLC standalone prototype network with 100 MHz carrier bandwidth 

operating in the 28 GHz band; it implements 5G standardized functionality for ultra-reliable 

and low latency communication [AVK+22]. The trial network is deployed at the 5G Industry 

Campus Europe in Aachen Germany7. The network setup and the measurement methodology 

are further described in [AAB+22] and in [AVK+22]. Two histogram data sets are derived from 

measurements in the trial network, one measurement for downlink (Figure 8) and one 

measurement for uplink (Figure 9). The measurements are made for periodic UDP messages 

with 32 bytes payload that are transmitted every 7 ms. 

 

Figure 8: Histogram of downlink packet delay of the data set PD-Wireless-5G-3a based on measurements in a 

5G URLLC trial network. 

min max
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Figure 9: Histogram of uplink packet delay of the data set PD-Wireless-5G-3a based on measurements in a 5G 

URLLC trial network. 

The data set is contributed with the objective to keep the quality of the data intact, which 

prohibits modification and further sharing of the data. 

• PD-Wireless-5G-3b (closed formula): Closed form approximation of the data set PD-Wireless-

5G-3a from a 5G trial network in an industrial research shopfloor as described above (see also 

[AAB+22] and [AVK+22]. The PD is expressed as normal distributions that has been fitted to 

the histogram values. 

o Downlink 

▪ Normal distribution (in units: ms) 

▪ Mean: 𝜇 = 0.776011 

▪ Standard deviation: 𝜎 = 0.122207 

o Uplink 

▪ Normal distribution (in units: ms) 

▪ Mean: 𝜇 = 0.687132  

▪ Standard deviation: 𝜎 = 0.0976876  

• PD-Random-Walk (algorithm): an algorithmic definition of PDs for drawing correlated packet 

delays based on a random walk process. Please note that we use a random walk here only as 

an example to show that the simulation framework features the implementation of random 

processes in an algorithmic fashion and can also be used to produce correlated delay values 

at simulation time. We explicitly do not claim that random processes model PD in wireless 

networks! This is subject to ongoing investigations in the project, and results of these 

investigations will be presented at a later point in time in the project runtime 

The subsequent sections contain a description on how PD:Random-Walk is implemented. 

PD-Wired 

PD-Wired was measured with a commercial TSN bridge. Figure 10 shows the hardware setup of the 

measurements.  

min max
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Figure 10: Setup for measuring PD of wired TSN bridge 

The talker and listener are connected to the TSN bridge through fibre cables with 1 Gbps. Taps are 

installed on these cables to mirror the signal (packets) to two ports of a network monitoring device 

(Napatech NT40E3-4-PTP SmartNIC). These taps are passive devices, not adding extra delay. The 

monitoring device produces two trace files in Packet Capture (PCAP) format: one for the ingress traffic 

to the TSN bridge; one for the egress traffic from the TSN bridge. All captured packets are timestamped 

with nanosecond resolution, using the same hardware clock for both monitoring ports.  

The bridge operates in store&forward mode. All gates of the TSN bridge are always open, i.e., no TSN 

shaping is performed. TSN shaping is used to control queuing delay and depends on the configuration 

of the gate states in the GCL. Here, we are only interested in the PD without queuing delay (i.e., only 

transmission, processing, and propagation delay, which are not controllable by the IEEE 802.1Qbv 

schedule), and open gates ensure that incoming packets are forwarded immediately. Therefore, 

besides the packets being measured, any other traffic is minimized (only control packets from the 

Address Resolution Protocol (ARP) and the Rapid Spanning Tree Protocol (RSTP) are sent by the 

bridge). VLAN filtering is turned on, as this is common in TSN networks since the tag is also required 

to carry the PCP header field for defining the priority of packets. Here, all packets have the same 

priority since TSN scheduling is not active.  

A total number of 1000 minimum-sized (64B) measurement packets are sent with a rate of 10 Pkt/s, 

i.e., with a deliberately low rate such that no congestion is building up in the egress port queue.  

Figure 11 shows the histogram of the packet delay between Tap 1 and Tap 2. The minimum delay is 

4420 ns; the maximum delay is 4660 ns; the mean is with 95 % confidence in the interval [4545 ns, 

4550 ns]. 
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Figure 11: Packet delay histogram for wired TSN bridge 

To interpret these measurements, it is interesting to further look at the contributors of the measured 

delay. Figure 12 shows that the measured delay actually includes transmission delay (dtransmission) for 

minimum sized packets over 1 Gbps links, propagation delay (dpropagation) along the cable (5 m), and 

processing delay (dprocessing) of the TSN bridge. The first time stamp is taken at the tap at time t1 at the 

start of frame, the second at time t2 when the start of frame arrives at the second tap. 

 

 

Figure 12: Break down of parts included in measured delay of wired TSN bridge 

Therefore, the measured delay includes: 

𝑝𝑎𝑐𝑘𝑒𝑡 𝑑𝑒𝑙𝑎𝑦 = 2𝑑𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 +  𝑑𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 +  𝑑𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
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If one wants to separate the measured packet delay from transmission and propagation delay – which 

are often simulated already – to only consider the processing delay “inside” the bridge, the 

propagation delay and transmission delay can be estimated as: 

𝑑𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 =  
5 𝑚

2

3
𝑐

 = 25 ns 

𝑑𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  
64𝐵

1 𝐺𝑏𝑝𝑠
= 512 𝑛𝑠 

The mean value of the measured packet delay (including propagation, transmission, and processing 

delay) is 4546.4 ns. The estimated mean processing delay is therefore 4546.4 ns – 50 ns – 512 ns = 

3984.4 ns.   

PD-Random-Walk 

A random walk is a random process that iteratively creates a sequence of correlated random numbers. 

We use random walks here as a deliberately simple and easy to understand example to show that we 

can implement PDVs through algorithms in our simulation framework. In the future, more 

sophisticated implementations can model, for instance, correlated PDs. 

Given a random start value, say 𝑥0 ∈ ℝ, in each iteration 𝑖 + 1, a new random number is calculated 

as 𝑥𝑖+1 = 𝑥𝑖 +  𝑟, where 𝑟 is a random number, e.g., ±1. 

In our simulation framework we implement this random walk process as a custom NED function shown 

in Listing 3. 

quantity randomWalk(quantity init, quantity randValue, string key?)  
Listing 3: Definition of the randomWalk NED function. 

In this function, init represents the start value 𝑥0 and randValue represents 𝑟. If multiple random walk 

processes are used within one simulation, the key parameter can be used to distinguish between 

them. The quantity type represents a numbered value including a unit (e.g. 5 ms). Listing 4 shows an 

example configuration using the randomWalk NED-function within our PairwiseDelayer. 

<delays> 
    <delay in="deviceA">randomWalk(5ms,normal(0ms,1ms),"uplinkA")</delay> 
    <delay out="deviceA">randomWalk(1ms,normal(0ms,0.5ms),"downlinkA")</delay> 
</delays>  

Listing 4: Example configuration of the PairwiseDelayer using the randomWalk function. 

In Section 5.1.2, we present simulation results using our random walk PD. 

3 Simulation Models for the Network Control Plane 
The focus of the first release is on the data plane simulation rather than the control plane. Therefore, 

we only briefly present here, how to statically configure the data plane elements and a simple 

mechanism to change parameters at simulation time.  

The existing TSN mechanisms implemented by INET, such as the gate control lists of the TAS, can be 

statically configured through configuration (ini) files. Listing 5 shows an excerpt from a configuration 

file shows an example configuration of a TAS with two gates of a TSN bridge. Figure 13 shows the 

resulting schedule. 
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*.switch.eth[*].macLayer.queue.numTrafficClasses = 2 
 
# best-effort 
*.switch.eth[*].macLayer.queue.transmissionGate[0].offset = 0ms 
*.switch.eth[*].macLayer.queue.transmissionGate[0].durations = [4ms,6ms] #10ms period 
 
# time-critical traffic 
*.switch.eth[*].macLayer.queue.transmissionGate[1].offset = 6ms 
*.switch.eth[*].macLayer.queue.transmissionGate[1].durations = [2ms,8ms] #10ms period  

Listing 5: Example TAS configuration for a TSN bridge with two gates. 

 

 

Figure 13: Resulting schedule from the configuration in Listing 5. 

For the currently designed algorithms for IEEE 802.1Qbv schedule calculation, which takes a static set 

of streams as input and calculates an IEEE 820.1Qbv schedule that respects a specified PD (cf. 

deliverable D3.1 [DET23-31]), this static configuration is sufficient since these algorithms calculate the 

schedule for a set of streams and static parameters known a priori. An interface between 6GDetCom 

node (wireless TSN bridge) and Centralized Network Controller (CNC) will be added later, when 

scheduling algorithms are considered that can adapt to dynamic changes of PDs. 

As already presented in Section 2.2.2, the PD and processing delay distributions can be configured 

through configuration files as well, which are read at the start of the simulation. This allows for static 

definitions of delay distributions. 

Moreover, delay distributions or distribution parameters can be changed during simulation time at 

specific points in time through the so-called Scenario Manager8 of INET. For instance, this allows for 

simulating a change of wireless link quality with respect to delay, as could be caused by a growing 

number of packet retransmissions with Hybrid Automatic Repeat Requests (HARQ protocols).  

                                                           
8 Scenario Scripting — INET 4.5.0 documentation (omnetpp.org) 

https://inet.omnetpp.org/docs/users-guide/ch-scenario-scripting.html
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Besides this so far simple control plane configuration, the latter release of the simulation framework 

will also incorporate detailed control plane functions like a CNC. 

4 Simulation Models for the Edge Cloud 
Since we consider dependable end-to-end communication between applications – possibly containing 

a full round-trip from the initial talker to a listener (request) and back (response) with processing at 

the listener side, we also need to consider the infrastructure hosting these applications with respect 

to their timing behavior. Edge computing infrastructures are a prominent environment for time-

sensitive applications to host applications physically close to end systems to avoid the inevitably 

long(er) propagation delay to a remote cloud infrastructure.  

In this section, we present our approach to simulate the processing delay of applications hosted in an 

edge cloud infrastructure and exemplary data sets. 

4.1 Alternative Approaches and Design Rationale 
Similar to the approach to simulate PD, we can again identify two different approaches to simulated 

processing delay: 

1. Fine-grained simulation model of all components of the execution environment contributing 

to processing delay. In modern edge cloud systems, the execution environment can be 

complex, including not only the physical machine, but also virtual machines controlled by a 

hypervisor, operating system (OS) kernel implementing different scheduling policies (e.g., 

strict priority scheduling, FIFO, round-robin, EDF, completely fair scheduling for Linux), 

containers executing in namespaces within an OS kernel.  

2. Coarse-grained simulation model picking processing delays from a given stochastic 

processing delay distribution. 

The advantages and disadvantages of both approaches are basically the same as for the simulation of 

PDs. Obviously, the complexity of simulating the processing delay with a fine-grained model is high. In 

addition, the existing INET framework is tailored to network simulation, and does provide only 

rudimentary support for the simulation of applications, let alone the whole execution environment.  

Moreover, implementing the second approach is consistent with the simulation of PDs allowing for 

the re-use of some parts of the implementation. Therefore, we decided to implement the second 

approach enabling the specification of stochastic processing delay distributions in the simulator, which 

randomly delays the response to requests received by applications.     

4.2 Design and Implementation of Processing Delayer 
To add processing delay in edge cloud applications, we implemented a new application component 

for the simulator. Applications (“Apps”) in INET act as traffic sources and sinks. Since we focus on 

connection-less communication as it is typical for most real-time communication, the INET UDP 

application models are a suitable choice to base our application on. Therefore, we a new application 

model called UdpEdgeCloudApp9, which is based on the UdpEchoApp of INET and can be used 

anywhere where other UDP apps (e.g., UdpApp, UdpBasicApp) from the INET framework can be used. 

The UdpEdgeCloudApp can be used as a subcomponent in different network devices that host traffic 

sources and sinks. The UdpEdgeCloudApp receives a UDP packet, delays it, and then forwards it to 

                                                           
9 UdpEdgeCloudApp (deterministic6g.github.io) 

https://deterministic6g.github.io/deterministic6g/doc/neddoc/d6g.apps.edgecloud.UdpEdgeCloudApp.html
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another application, which can either be the initial sender or any other device, whose destination IP 

address and port number can be specified in the configuration as shown in Listing 6. 

Figure 14 shows an exemplary network with a device called cloudServer, which implements an 

UdpEdgeCloudApp9. The delay is added within the C++ code of the UdpEdgeCloudApp before 

forwarding the packet to the configured device. Note that several apps can be hosted on the same 

device, therefore, app[0] as shown in Figure 14 (orange circle) specifies on of these apps.  

 

 
Figure 14:  Example network with a cloud device using the UdpEdgeCloudApp (app[0]). 

The processing delay configuration works similar to the configuration of PDs as described in Section 

2.2.2, and can either be a custom NED-function, an OMNeT++ built-in statistical distribution, a 

mathematical expression, or an arbitrary combination of these. 

Listing 6 shows the configuration of the cloudServer device in Figure 14, where localPort is the port on 

which the UdpEdgeCloudApp9 is listening, and destAddress and destPort are the name of the 

destination device and destination port of the destination device, respectively. The delay parameter 

contains the intended delay configuration. In particular, every app of the cloud server has exactly one 

delay configuration, which is applied if a packet arrives at the specified localPort. In order to specify 

different delays for different sources, one can create multiple apps with a different localPort and 

modify the source apps respectively. 

*.cloudServer.numApps = 1 
*.cloudServer.app[0].typename = "UdpEdgeCloudApp" 
*.cloudServer.app[0].destAddress = "receiver" 
*.cloudServer.app[0].destPort = 1002 
*.cloudServer.app[0].localPort = 1001 
*.cloudServer.app[0].delay = rngProvider("histogramCloud")  

Listing 6: Example configuration of a device using the UdpEdgeCloudApp. 
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If we execute a simulation using Figure 15a as an input distribution histogramCloud, we can see the 

resulting end-to-end delay of this stream follows the same distribution (Figure 15b), i.e., the delay is 

added as intended. Note, that the only network delay simulated in this simulation is the constant delay 

of Ethernet links, i.e. there is no PDV simulated by our PairwiseDelayer. 

 
Figure 15a: Input distribution for the edge cloud delay. 

 
Figure 15b: Resulting end-to-end delay. 

Figure 15: Comparison of the input PD for an edge cloud application and the resulting end-to-end delay. 

4.3 Exemplary Processing Delay Distributions for the Edge Cloud 
Together with the software to simulate processing delay distributions of edge cloud applications and 

services, we provide two data sets for modeling of processing delay (links to the datasets are 

provided in Table 1): 

• ProcessingDelayDistribution1 (data set): This data set was measured in a smaller private 

edge cloud infrastructure.  

• ProcessingDelayDistribution2 (data set): This data set was measured on a server node using 

a containerized application deployment.  

4.3.1 ProcessingDelayDistribution1 
Figure 16 shows the setup and how delay was measured. The environment for this edge cloud data 

set consists of one edge cloud server in a private edge cloud infrastructure. This edge cloud server is 

connected to one O-RAN indoor base station connected to a 5G core. The core is also connected to 

the public Internet where another public cloud server is operating.  

Two mobile devices (smart phones) are communicating through the base station with the private edge 

cloud server and the public cloud server, respectively. The ping tool was used to measure the round-

trip delays. All devices have synchronized clocks. 
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Figure 16: Measurement setup 

4.3.2 ProcessingDelayDistribution2 
The objective of this measurement experiment was to collect information about the response time of 
a cloudified application, considering the effect of the different delay components of the cloud 
execution environment, e.g., the application processing time, operating system, virtualization 
ecosystem, type of scheduling.  
An application was used to simulate a collaborative, cloud-based robot control application. The 
application comprises three components, arranged as a chain of functional steps of the application; 
the first component could simulate video-processing/object tracking module, the second component 
represented the collaborative robot control logic, while the third component modeled the low-level, 
individual robot control. 
For the cloud infrastructure, a server with multiple CPU and Real-time Linux OS was used. The 
application components were deployed in docker containers, and multiple instances of the first and 
third components were deployed. In the used experiment each component had deterministic 
execution time. 
The performance of two types of scheduling, namely SCHED_FIFO and SCHED_DEADLINE was 
compared, and the resulting histograms is based on cumulative results of multiple measurements.  

5 Simulation Scenarios 
Various simulation scenarios are presented in our simulation framework to validate the effectiveness 

or evaluate the performance of the concepts and mechanisms designed in WP2 and WP3. In particular, 

the impact of packet and processing delay variations can be evaluated using the PD and processing 

delay simulation models presented in Section 2.2 and Section 4.2, respectively. 

In the following subsections, we present the implementation of different simulation scenarios:  

• A baseline scenario consisting of a simple line topology 

• An industrial automation scenario based on a use case from WP1 (D1.1 DETERMINISTIC6G 

Use Cases and Architecture Principles [DET23-D11]) 

• Time synchronization scenarios tailored to the evaluation of gPTP 

The first two scenarios focus on the performance of IEEE802.1Qbv scheduling with PDs. 
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The time synchronization scenario focuses on the performance of time synchronization with PDVs. 

Please note that the presented results are preliminary and might change or will be refined until the 

final deliverable D4.5 Validation Results, which is explicitly focused on the presentation of validation 

results.  

5.1 Baseline Scenario 
The baseline scenario simulates a simple line topology with a single 6GDetCom node and further wired 

TSN bridges. Despite its simplicity, it can be used to showcase and test the core functions of the 

simulator framework, such as the previously described PairwiseDelayer component and the Histogram 

module. 

5.1.1 Scenario Design and Implementation 
In more detail, the Baseline scenario has the following topology (cf. Figure 17). On one edge of the 

network, we have a 6GDetCom node (detcom) with a wireless network and one wireless device 

(device1) as shown on the left side in the figure. The other side of the 6GDetCom node is connected 

to a line of wired TSN bridges with another end device (device2) at the end of the line topology. 

 

Figure 17: Baseline scenario with a wireless device and 6GDetCom node on the left side and a line of wired TSN 

bridges on the right side. 
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Figure 18: Given uplink distribution (left) and downlink distribution (right) for the Baseline scenario. 

In this scenario, we use two different histograms shown in Figure 18 to configure PDs, one for the 

uplink direction of the wireless network and one for the downlink direction, respectively. 

5.1.2 Results 
We mainly use the Baseline scenario to explore the capabilities of our implemented components of 

the simulation framework, in particular, the PairwiseDelayer. This includes analyzing how the resulting 

simulated packet delay corresponds to the given input histograms of Figure 18. Figure 19 shows the 

distribution of the resulting packet delays in both, the uplink and downlink direction. By comparing 

the distributions from Figure 19 (result of the simulation) to the configured distributions in Figure 18, 

we see that the simulated distributions follow the given distributions.   

  
Figure 19: Resulting packet delays of the Baseline scenario. 

Additionally, we use the Baseline scenario to showcase our random walk distribution as described in 

Section 2.2.3. As an exemplary configuration, we replace the downlink distribution with the random 

walk configuration shown in Listing 7. 

randomWalk(5.5ms,normal(100us),"downlink")  
Listing 7: Delay configuration using the randomWalk NED function. 

Figure 20 shows the resulting end-to-end delay in uplink and downlink directions. The orange line 

depicting the downlink delay shows the characteristic random walk pattern centered around the mean 

value of 5.5 ms.  
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Figure 20: Resulting packet delays using random walk. 

Further tests (not shown in this document) have been performed with other features to simulate PD 

as presented above to test their functionality. From these tests we conclude that the PD feature works 

correctly, i.e., the simulated PD follows the given PD distributions as configured.  

5.2 Industrial Automation Scenario 
The Industrial Automation Scenario has been derived from a use case of D1.1: DETERMINISTIC6G Use 

Cases and Architecture Principles [DET23-D11]. One purpose of this scenario is to validate and evaluate 

concepts for wireless-friendly end-to-end scheduling as designed in WP3. The design of such 

scheduling approaches is ongoing work at the time of writing this document. Therefore, we only 

present first preliminary evaluation results of one approach for wireless-friendly IEEE802.1Qbv 

scheduling with a TAS described in D3.1 6G Convergence Enablers Towards Deterministic 

Communication Standards [DET23-31], mainly to show the usefulness of the simulation framework to 

validate and evaluate such mechanisms.  

This scenario consists of two Automated Guided Vehicles (AGVs), which connect wirelessly to a 

processing cell when they are close to the cell. The AGVs can communicate with each other wirelessly 

to coordinate their movement as a swarm, and they can communicate with the cell to coordinate the 

movement relative to the components of the cell. These movements could implement processing 

steps like bending, turning, inserting, or connecting individual or multiple parts. Although the AGVs 

are mobile in this scenario and the connection might be intermittent (only when the AGVs are close 

to the cell and registered with the cell), our first implementation of the scenario does not include the 

simulation of mobility. Therefore, we assume that the AGVs are constantly connected to the 

processing cell.  

5.2.1 Scenario Design and Implementation 
The topology of the scenario is depicted in Figure 21. It consists of one 6GDetCom node (detCom10), 

which connects wirelessly to two devices (agv1 and agv2) that represent the AGVs. Moreover, the 

6GDetComNode has a wired connection to a processing cell (processingCell). Note that each AGV and 

the processing cell contains a wired TSN network segment as shown in Figure 22, which illustrates the 

details of the AGV component (left figure) and the processing cell component (right figure) to show 

the sub-components implemented by the AGV and processing cell. The network segment for an AGV 

consists of a default INET TsnSwitch (detComAdapter) and two TsnDevices (interAgv and interToCell) 

                                                           
10 As modules in Omnet++ need to start with a letter, we call it detCom instead of 6GDetCom node. 
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which send and receive packets. The processing cell consists of two TsnSwitches (detComAdapter and 

bridge) and two TsnDevices (swarmControl and swarmStatus), which also send and receive data. 

  

 
Figure 21: Industrial Automation Scenario – Topology 

  
Figure 22: Details of the industrial automation scenario and its network segments of the AGVs and processing 

cell, respectively. 

 

The traffic in this scenario includes six different streams: 

1. Stream 1: From agv1.interToCell to processingCell.swarmStatus 

2. Stream 2: From agv2.interToCell to processingCell.swarmStatus 

3. From agv1.interAgv to agv2.interAgv 
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4. From agv2.interAgv to agv1.interAgv 

5. From processingCell.swarmControl to agv1.interToCell 

6. From processingCell.swarmControl to agv2.interToCell 

This setup allows for analyzing the influence of PDVs onto streams and explore the capabilities of 

common and wireless-friendly scheduling algorithms as shown in the next sub-section. 

5.2.2 Preliminary Results 
In this sub-section, we discuss the first results from the Industrial Scenario evaluation. We first 

simulate scheduling with a TAS schedule calculated under the assumption of constant packet delay. 

Although this is an unrealistic assumption, it is still often made in existing scheduling approaches for 

wired TSN networks. Then, we show the impact of PDV onto the schedule calculated for ideal 

assumptions. Finally, we show how a wireless-friendly schedule will improve the robustness to PDV.  

For all following scenarios, all streams have a cycle time of 1 𝑚𝑠 and all Ethernet links have a link 

speed of 100 𝑀𝑏𝑝𝑠 and a propagation delay of 50 𝑛𝑠. The size of all frames including all headers is 

1000𝐵. 

Influence of PDVs onto other streams 

In our first evaluation, we only consider the first two streams, i.e., from agv1.interToCell to 

processingCell.swarmStatus and from agv2.interToCell to processingCell.swarmStatus. First, we 

assume constant transmission and propagation delay for both streams using the delay configuration 

for the 6GDetCom node (detCom) shown in Listing 8. Note, that these delay values include all delay 

components of the wireless links (dotted lines in Figure 21), i.e., also the propagation delay, 

transmission delay, delay because of retransmissions, etc. All other links (solid lines in Figure 21) 

simulate the delay of Ethernet links as described above. 

<delays> 
    <delay in="agv1">100us</delay> 
    <delay in="agv2">100us</delay> 
</delays>  

Listing 8: Delay configuration using a constant delay for the detCom node. 

We then use a “non-wireless-friendly” scheduling approach similar to [DN16], designed for wired 

TSN networks, assuming very small and constant delay, i.e. zero PDV. This approach aims to 

minimize the end-to-end delay and keeps the streams close together in time (“back-to-back” 

scheduling) to minimize the required number of GCL entries. With this scheduling approach, the 

calculated schedule is show in Table 2. 

stream sender receiver start endtransmission endpropagation 

1 

agv1. 
interToCell 

agv1. 
detComAdapter 

0 𝜇𝑠 80 𝜇𝑠 80.05 𝜇𝑠 

agv1. 
detComAdapter 

detCom 80.05 𝜇𝑠 80.05 𝜇𝑠 𝟖𝟎. 𝟎𝟓 𝝁𝒔 

detCom processingCell. 
detComAdapter 

𝟏𝟖𝟎. 𝟎𝟓 𝝁𝒔 260.05 𝜇𝑠 260.10 𝜇𝑠 

processingCell. 
detComAdapter 

processingCell. 
bridge 

260.10 𝜇𝑠 340.10 𝜇𝑠 340.15 𝜇𝑠 

processingCell. 
bridge 

processingCell. 
swarmStatus 

340.15 𝜇𝑠 420.15 𝜇𝑠 420.20 𝜇𝑠 
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2 

agv2. 
interToProcessingC
ell 

agv2. 
detComAdapter 

80.96 𝜇𝑠 160.96 𝜇𝑠 161.01 𝜇𝑠 

agv2.detComAdapt
er 

detCom 161.01 𝜇𝑠 161.01 𝜇𝑠 𝟏𝟔𝟏. 𝟎𝟏 𝝁𝒔 

detCom processingCell. 
detComAdapter 

𝟐𝟔𝟏. 𝟎𝟏 𝝁𝒔 341.01 𝜇𝑠 341.06 𝜇𝑠 

processingCell. 
detComAdapter 

processingCell. 
bridge 

341.06 𝜇𝑠 421.06 𝜇𝑠 421.11 𝜇𝑠 

processingCell. 
bridge 

processingCell. 
swarmStatus 

421.11 𝜇𝑠 501.11 𝜇𝑠 501.16 𝜇𝑠 

Table 2: Schedule calculated by scheduler for wired networks. 

Note, that Stream 2 starts later than Stream 1 to ensure there is no overlap on the first consecutive 

link from detCom to processingCell.detComAdapter. Stream 2 is scheduled directly after the 

transmission of Stream 1 except for the inter-frame gap (IFG) of 0.96 𝜇𝑠 in our setup. Note, that there 

is no transmission and propagation delay on the wireless link before the detCom node. These delays 

are part of the delay configured in Listing 8 and are shown as bold entries in Table 2. The calculated 

schedule leads to the GCL configuration for the detCom node as shown in Listing 9. 

initiallyOpen = true 
offset = 819.95us 
durations = [161us,839us]  

Listing 9: GCL configuration based on a non-wireless-friendly scheduling approach. 

Using the offset parameter, we can set at which point in time of the cycle we are at the start of the 

simulation. As the first frame arrives at the gate at 180.05 𝜇𝑠, we want to open the gate at exactly 

this time. This means the offset needs to be 180.05 𝜇𝑠 before the start of any cycle. With our cycle 

time of 1000 𝜇𝑠 this leads to an offset of 1000 𝜇𝑠 − 180.05 𝜇𝑠 = 819.95 𝜇𝑠. 

The simulation results in Figure 23a show that all packets arrive at their pre-calculated time with the 

expected end-to-end delay of 420.2 𝜇𝑠. Note, as the end-to-end delay is equal for both streams only 

one stream is visible in the diagram. 

Obviously, the assumption of constant delays is unrealistic already in wired TSN networks but even to 

a larger extent in wireless networks. Therefore, next we add PDV to observe the impact on scheduling. 

We add PDV to Stream 1 and observe its impact on Stream 2 without additional PDV, using the 

previous schedule calculated for constant delays. To this end, we re-run the simulation with the delay 

configuration in Listing 10. 

<delays> 
    <delay in="agv1">normal(100us,10us)</delay> 
    <delay in="agv2">100us</delay> 
</delays>  

Listing 10: Delay configuration with a PD distribution for one stream. 

Without any changes to our schedule or the GCL this leads to the simulation results in Figure 23b. The 

figure shows, that the streams only arrive within their calculated time in the first cycle. In the second 

cycle, the frame of Stream 1 arrives at the GCL later than calculated leading to an end-to-end delay of 

~429 𝜇𝑠 (instead of the calculated 420 𝜇𝑠). Thus, by the time the frame of Stream 1 is completely 
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transmitted the remaining duration of the open gate is not long enough anymore to transmit the 

frame of Stream 2. This leads to the frame of Stream 2 being queued until the beginning of the next 

cycle. In the rest of the simulation, as soon as the gate opens in the next cycle, the queued frame of 

Stream 2 of the previous cycle is transmitted first (resulting in and end-to-end delay of ~1340 𝜇𝑠). 

During this transmission, the frame of Stream 1 of the current cycle arrives which is then transmitted 

immediately afterwards. As the open gate slot is completely filled with the frame of Stream 2 from 

the previous cycle and the frame of Stream 1 of the current cycle, the frame of Stream 2 of the current 

cycle again has to be queued until the gate opening in the next cycle. Without dropping any packets 

(e.g. by using ingress filtering and policing) or using additional gate opening times, there is no 

possibility to recover from this. 

 
Figure 23a: Constant delay. 

 
Figure 23b: Stream 1 with PDV. 

Figure 23: Influence of PDVs onto other streams 

Adapting the GCL on the DetCom Node by Considering PDV 

In a third simulation, we analyze what happens if we adapt the GCL according to the PDV of Stream 1. 

In this run, we want to guarantee that Stream 1 arrives within the same cycle with a reliability of 

99.7 %. For our chosen normal distribution with 𝜇 = 100 𝜇𝑠 and 𝜎 = 10 𝜇𝑠 this corresponds to a PDV 

interval of [𝜇 − 3𝜎, 𝜇 + 3𝜎] = [70 𝜇𝑠, 130 𝜇𝑠]. However, with a small probability, packets could still 

arrive outside this interval. One approach to protect other streams is to drop frames arriving outside 

of this interval. To this end, we could use the filtering feature from IEEE 802.1Qci Per-Stream Filtering 

and Policing [IEEE17-8021Qci] implemented by INET. To mimic the behavior of filtering as done by 

IEEE 802.1Qci, we can simply truncate the PD distribution using the configuration from Listing 11. Then 

no packets are sent that have delays outside the filtering time window. 

<delays> 
    <delay in="agv1">min(130us,max(70us,normal(100us,10us)))</delay> 
    <delay in="agv2">100us</delay> 
</delays>  

Listing 11: Delay configuration with a truncated PD distribution for one stream. 

We now need to reconfigure the GCL to open 30 𝜇𝑠 earlier and stay open for an additional 30 𝜇𝑠 as 

shown in Listing 12. 

initiallyOpen = true 
offset = 849.95us 
durations = [221us,779us]  

Listing 12: GCL configuration adapted to the configured PD distribution. 
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Figure 24 shows the simulation results of this simulation. We can see that the end-to-end delay of all 

streams stay within the cycle time. However, we can also see that the PDV of Stream 1 affects the 

arrival time of Stream 2. Without any additional knowledge about the required transmission 

guarantees of Stream 2 this might be problematic. Even if the receiver of Stream 2 could handle this 

additional delay, Stream 2 might now affect the delay of other streams on other links leading to a 

cascading effect. 

 
Figure 24a: E2E delays of Stream 1 and 2. 

 
Figure 24b: Distribution of E2E delay of Stream 2. 

Figure 24: Influence of an adapted GCL on streams with a PDV. 

Using a Wireless-friendly Schedule 

In a next simulation, we aim to adapt the schedule to mitigate the effects of the PDV of Stream 1. To 

this end, we use a robust, wireless-friendly scheduling algorithm as described in D3.1 6G Convergence 

Enablers Towards Deterministic Communication Standards [DET23-D31]. The objective of this 

algorithm is to maximize the gap between all streams while maintaining a low end-to-end delay. In 

our scenario, this leads to the “wireless-friendly” schedule shown in Table 3. 

stream sender receiver start endtransmission endpropagation 

1 

agv1. 
interToCell 

agv1. 
detComAdapter 

0 𝜇𝑠 80 𝜇𝑠 80.05 𝜇𝑠 

agv1. 
detComAdapter 

detCom 80.05 𝜇𝑠 80.05 𝜇𝑠 𝟖𝟎. 𝟎𝟓 𝝁𝒔 

detCom processingCell. 
detComAdapter 

𝟏𝟖𝟎. 𝟎𝟓 𝝁𝒔 260.05 𝜇𝑠 260.10 𝜇𝑠 

processingCell. 
detComAdapter 

processingCell. 
bridge 

260.10 𝜇𝑠 340.10 𝜇𝑠 340.15 𝜇𝑠 

processingCell. 
bridge 

processingCell. 
swarmStatus 

340.15 𝜇𝑠 420.15 𝜇𝑠 420.20 𝜇𝑠 

2 

agv2. 
interToCell 

agv2. 
detComAdapter 

500 𝜇𝑠 580 𝜇𝑠 580.05 𝜇𝑠 

agv2. 
detComAdapter 

detCom 580.05 𝜇𝑠 580.05 𝜇𝑠 𝟓𝟖𝟎. 𝟎𝟓 𝝁𝒔 

detCom processingCell. 
detComAdapter 

𝟔𝟖𝟎. 𝟎𝟓 𝝁𝒔 760.05 𝜇𝑠 760.10 𝜇𝑠 

processingCell. 
detComAdapter 

processingCell.brid
ge 

760.10 𝜇𝑠 840.10 𝜇𝑠 840.15 𝜇𝑠 
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processingCell. 
bridge 

processingCell.swar
mStatus 

840.15 𝜇𝑠 920.15 𝜇𝑠 920.20 𝜇𝑠 

Table 3: Wireless-friendly schedule 

Please note that Stream 2 is now scheduled exactly 500 𝜇𝑠 after Stream 1, which is exactly half the 

cycle time of 1 𝑚𝑠. For two streams, this is the optimal case, as it minimizes the probability of streams 

colliding with streams of the same cycle as well as the next cycle. Please note that in this example, an 

adaptation of the start times at the end systems is sufficient to avoid interference between streams. 

However, in general, a wireless-friendly schedule will consider both, the start times of transmissions 

at end systems as well as the transmission times at bridges as defined by the GCL. The adapted GCL 

for this schedule looks like shown in Listing 13. 

initiallyOpen = true 
offset = 849.95us 
durations = [140us,390us,80us,390us]  

Listing 13: GCL configuration based on a wireless-friendly scheduling approach. 

In Figure 25, we can see that the PDV of Stream 1 now does not have an influence on the end-to-end 

delay of Stream 2 anymore.  

 

Figure 25: End-to-end delay of two streams in a scenario with an adapted scheduling algorithm. 

In conclusion, this shows: 

• With the simulation framework, we are able to investigate the impact of PDVs on scheduling. In 

particular, we can analyze the impact of PDV onto scheduling as shown and the improvements 

made by novel wireless-friendly scheduling algorithms. However, evaluations are not limited to 

analyzing scheduling under PDV, but can also be used for analyzing other time-dependent 

mechanisms such as time synchronization as shown in the next sub-section. 

• As a first preliminary evaluation result, we see that the robustness of time-driven IEEE 802.1Qbv 

schedules can be improved through wireless-friendly schedules. More concepts for robust, 
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wireless-friendly scheduling will be investigated in the future and validated by further enhancing 

this and other scenarios. 

5.3 Time Synchronization Scenario 
The time synchronization scenario of our simulation framework is used to analyze how gPTP performs 

in converged 5G/6G-TSN networks, in particular, when adding PDV. For TSN networks, INET already 

supports time synchronization using the gPTP standard including showcases11 for different kinds of 

time synchronization networks. In this section, we describe how we can adapt and use the gPTP 

functionality of INETs in our simulation framework. 

As described in D2.2 Time synchronization for E2E time awareness [DET23-D22] and also shown in 

Figure 26, converged 5G-TSN networks use two different time synchronization domains: the 5G time 

synchronization domain and the TSN time synchronization domain, respectively. The 5G network 

components (UE, UPF) are synchronized within the 5G time synchronization domain. The TSN time 

synchronization domain is synchronized to a time transmitter using the gPTP protocol.  

 

Figure 26: Time synchronization in 5G-TSN networks 

As our 6GDetCom node is based on the INET TsnSwitch, we can use its built in gPTP component in 

Bridge mode. Figure 27 shows this setup using a time transmitter and two TSN devices synchronizing 

to the time transmitter (time receivers). The depicted diff values show the time difference between 

time transmitter and time receivers.   

                                                           
11 Using gPTP — INET 4.5.0 documentation (omnetpp.org) 

https://inet.omnetpp.org/docs/showcases/tsn/timesynchronization/gptp/doc/index.html
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Figure 27: TimeSynchronization showcase using our 6GDetCom node. 

As described in more detail in D2.2 [DET23-D22], the 6GDetCom node has to be aware of gPTP frames 

and calculate the residence time of gPTP frames within the 6GDetCom node. This works by setting an 

ingress timestamp 𝑡𝑖, when a gPTP frame enters the 6GDetCom node and an egress timestamp 𝑡𝑒, 

when the gPTP frame leaves the 6GDetCom node. The residence time within the 6GDetCom node can 

then be calculated as 𝑡𝑒 − 𝑡𝑖, which is then added to the correctionField of the gPTP frame. This is 

consistent with the definition of TSN bridges and, thus, should work out-of-the-box with the INET 

framework and in our network presented in Figure 27.  

However, we discovered two problems with the current INET implementation of gPTP and the current 

simulation model. First, the INET framework currently has an issue with its gPTP implementation which 

does not set correctionField correctly. This problem is already under investigation by the developers 

of INET12 but has not been fixed yet. Secondly, the abstraction made above assumes perfectly 

synchronized clocks within the 6G domain, i.e., 𝑡𝑖 and 𝑡𝑒 are synchronized within the 6G domain. 

However, as D2.2 describes, the clocks in a 6G domain are not perfectly synchronized – note that in 

general there is a wireless link with stochastic delay between the components taking the timestamps 

𝑡𝑖 and 𝑡𝑒. This means that 𝑡𝑖 and 𝑡𝑒 are set by different (usually not perfectly synchronized) clocks 

which leads to an inaccurate calculation 𝑡𝑒 − 𝑡𝑖 of the residence time. 

Due to these two problems, we refrain from presenting preliminary results here, which would not be 

consistent with a real implementation. Instead, we will tackle both problems in future work to gain 

                                                           
12 802.1as · Issue #920 · inet-framework/inet · GitHub 

https://github.com/inet-framework/inet/issues/920
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meaningful simulation results for the time synchronization scenario. First of all, we will fix the INET 

gPTP implementation to correctly set correctionField. Secondly, we will add a realistic clock model for 

the 5G domain in order to simulate the inaccurate calculation of the residence time, which impacts 

the accuracy of clock synchronization. These extensions are subject to a future release of the 

simulation framework. 

6 Conclusions & Future Work 

6.1 Conclusion 
In this document, we provided an overview of the first open-source software release of the simulator 

framework used in the DETERMINSTIC6G project for validating concepts developed as part of the 

project. The main features of the first release are the simulation models to simulate stochastic PD in 

the data plane of TSN networks and processing delay of applications hosted in an edge cloud 

infrastructure. We presented the generic design of a Packet Delayer component, which can simulate 

PDV based on closed-form descriptions (probability distributions), data sets of measured PD data – in 

particular data measured as part of the project in a 5G testbed, and algorithmically with 

implementations of stochastic processes, enabling the simulation of correlated packet delay. A similar 

feature has been presented for simulating processing delay. 

Moreover, we introduced a set of PD models and processing delay models, which are published 

together with the source code of the simulator. 

Finally, we presented three validation scenarios: a baseline and an industrial scenario, which focus on 

validating the effects of PDV onto scheduling in TSN networks; and a third scenario, which focuses on 

evaluating the performance of time synchronization under PDV. As a first result, we showed how that 

wireless-friendly schedules have the potential to improved dependability under PDV.   

6.2 Future Work 
The first software release of the validation framework is only an intermediate step towards the final 

validation framework. A second release is planned, which includes the following items as part of future 

work: 

Extended simulation models for the network data plane: The major feature of the network data plane 

implemented so far is the ability to simulate characteristic stochastic PD distributions. So far, we have 

only implemented independent and identically distributed (i.i.d.) random delay variables. However, 

delay might also be correlated, i.e., delay values which are close in time to each other might be similar. 

The next release will also allow for the simulation of non-i.i.d. PD distributions.  

Moreover, so far, we only considered existing standard TSN mechanisms for scheduling, in particular, 

the TAS (IEEE 802.1Qbv). In the future, we will consider other TSN shapers (as already provided by 

INET), and also other novel scheduling mechanisms and data plane enhancements like Packet Delay 

Correction (PDC), which need to be implemented for the simulator.   

Simulation models for the network control plane: So far, the network control plane models only allow 

for static configurations of the data plane mechanisms, mainly through configuration files. However, 

the adaptation to dynamic network conditions at runtime such as changing PD distributions is essential 

for wireless systems. For instance, a packet schedule might need to be adapted when delay 

distributions change significantly. To validate adaptation mechanisms, several extensions of the 
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validation framework are required: (1) a network control component (CNC in TSN parlance) has to be 

added to the simulator. Open-source CNC implementations already exist for real (physical) TSN 

networks, such as the OpenCNC [OPN23]. We will explore whether it is possible to create an interface 

for the simulator to connect such existing CNCs to the simulator via standard protocols like NETCONF 

[IETF11-RFC6241] for the so-called southbound interface between CNC and (now simulated) network 

elements (6GDetCom node). The major advantage of such an approach is to use the actual control 

logic as implemented for real networks in the CNC, while only simulating the network data plane. This 

also helps to evaluate the computational overhead, for instance, to calculate new schedules for IEEE 

802.1Qbv, which is a very costly operation with respect to processing. This computational overhead is 

hard to evaluate through “pure” simulations, but relatively simple to measure. (2) The control logic to 

be executed by the CNC needs to be implemented. For instance, we will implement different 

algorithms to calculate robust schedules for IEEE 802.1Qbv and possibly also other scheduling 

mechanisms and execute them within the CNC to automatically configure the 6GDetCom nodes and 

TSN bridges along the end-to-end path. We will also investigate how the adaptation can be triggered 

through an extended event-driven southbound interface between network elements and CNC and 

with the help of algorithms estimating and predicting the PD distributions based on observed delay 

date. 

Security: For dependable communication, security mechanisms to detect and mitigate attacks are of 

great importance. Extensions of the simulator shall enable to evaluate these security mechanisms. To 

this end, the simulator needs to be extended to allow for integrating packet traces to simulate attacks 

and implement the corresponding mechanisms to detect attacks.    

Extended scenarios: The scenarios will be further extended and refined, for instance, including more 

traffic models and refined scenarios for time synchronization, fixing the problems identified above, 

adding clock models, and to simulate and validate standby mechanisms increasing the resilience of 

time synchronization.  

Finally, the simulation framework will be used to produce extensive simulation results for validating 

the novel concepts that are developed during the project. 
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List of abbreviations 
AGV Automated Guided Vehicle 

ARP Address Resolution Protocol (RFC 826) 

CNC Centralized Network Controller  

GCL Gate Control List 

gPTP generalized Precision Time Protocol (IEEE 802.1AS) 

HARQ Hybrid Automatic Repeat Requests 

i.i.d. independent and identically distributed 

NED NEtwork Description 

PD Packet Delay 

PDC Packet Delay Correction 

PDV Packet Delay Variation 

PTP Precision Time Protocol (IEEE 1588) 

RSTP Rapid Spanning Tree Protocol (IEEE 802.1w) 

TAS Time-Aware Shaper (IEEE 802.1Qbv) 

TSN Time Sensitive Networking 

Table 4: List of abbreviations 

Terms and Definitions 
6GDetCom node A wireless TSN bridge including 6G mobile network components. 

Delayer A component of the simulated data path of an Ethernet bridge that adds 
delay to packets passing through the bridge. 

Table 5: Terms and Definitions 


